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A Big Picture about Data Science

“Whereas previous generations were in possession of data
about general phenomena, we are now in possession of data
about specific phenomena. For example, in genomics we have
data about each individual gene, in astronomy we have data
about each region of the sky, in medicine we have data about
each tumor, and in social science we have data about indi-
vidual humans. Our era is about ‘data’ and about ‘specific
context.’ In that sense ‘data science’ is an appropriate and
useful terminology for capturing current trends.”

Ani Adhikari, John DeNero, and Michael Jordan
(Harvard Data Science Review, Winter, 2021)
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Promises of Big Data

Treatment for you based only on data from people like you.

BUT: No one is perfectly like you.

Relevance for COVID-19: Population Risk vs Individual Risk
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What are the p and n for individualized treatments?

Potentially Infinitely many
attributes: p =∞

Each of us is unique: direct
learning sample size n = 0.

Moving from population-level “soft matching” to individual-level
“hard matching” – is that possible?

Ultimate bias-variance trade-off

Relevance vs Robustness
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It’s all Greek (or philosophy) to me ...

“Transition to the similar”

Aelius Galenus (129-210 AD)

Transitional inference: an empiricism concept
(Hankinson 1987, 1995)

“In cases in which there is no history, or in which there is none
of sufficient similarity, there is not much hope. And the same
thing is true in the case of transference of one remedy from
one ailment to another similar to it: one has a greater or
smaller basis for expectation of success in proportion to the
increase or decrease in similarity of the ailment, whether or not
history is involved. And the same goes for the transference
from one part of the body to another part: expectation of
success varies in direct proportion to the similarity.”
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Inference/Prediction as Approximation

What Do We Want to Know?: Your response to treatment t,
Yt(,∗), for t = A and t = B.

What Do We Know?: Either YA(,) or YB(,) (but not both) for
some other people, , 6= ,∗.

Strategy: Must construct population of “relevant” individuals with
which to approximate YOU.
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Resolution of the Approximating Population

The ,∗ relevant subpopulation is

ΩC (,∗) = {, : C (,) = C (,∗)}.

where C is a set of intrinsic (pre-treatment) characteristics.

R =dim(C ) is the primary resolution.

Inspired by multi-resolution wavelets formulation: match on
“signals” (low resolutions) and ignore “noises” (high resolutions)

YOU A Relevant Individual
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A Multi-Resolution View of Big Data

Population Resolution

Individual Resolution
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How to Capture Resolution?

Y lives on the same probability space as an information filtration
{Fr , r = 0, 1, ..., }, e.g., Fr = σ(X0,X1, . . . ,Xr ).

r is the index of resolution.

Resolution Specific Signal and Noise

µr = E[Y |Fr ]︸ ︷︷ ︸
signal at

resolution r

and σ2r = V[Y |Fr ]︸ ︷︷ ︸
noise at

resolution r
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Variance is Bias at a Higher ResolutionConditional ANOVA Decomposition (Pythagoras Theorem): for s > r

σ2r = E[σ2s |Fr ] + E[(µs − µr )2|Fr ]

(µs − µr )2: magnitude of signal at resolution s, not modelled at
resolution r .

Modelling “Individualized Treatment” as r →∞

σ2r = E[σ2∞|Fr ]︸ ︷︷ ︸
intrinsic variance

+
∞∑
i=r

E[(µi+1 − µi )2|Fr ]︸ ︷︷ ︸
total resolution bias

KEY: No such thing called “Variance” except at resolution ∞

(1) If we believe the world is stochastic, then σ2∞ > 0.

(2) If we believe the world is deterministic/chaotic, then σ2∞ = 0.

(3) There is no empirical test to distinguish between (1) and (2),
with any finite amount of data.
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Shifting from n→ 0 to r →∞ ...

Without direct data, we estimate Yme using µ̂r with r = r̃

Errors in Indirect-Data Prediction

Yme − µ̂r̃ = (µr̃ − µ̂r̃ )︸ ︷︷ ︸
Estimation Error

“Variance”

+ (µ∞ − µr̃ )︸ ︷︷ ︸
Resolution Error

Bias

+ (Yme − µ∞)︸ ︷︷ ︸
Intrinsic Error

Intrinsic Variance

Double accent: “hat” for estimation and “tilde” for selection.

How big should r̃ be? A Holy Grail of Statistical Inference and
Prediction.

Equivalent to bias-variance trade-off, but the resolution framework
leads to some surprises.

It has the same mathematical setup as sieve method for
non-parametric estimation.
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Linear Model with Potentially Infinitely Many Predictors

Assume both target and training populations are generated from

Y =
∞∑
r=0

βrXr + ε, ε ∼ N (0, τ2), ε ~X∞, V(Y ) <∞.

X0 = 1, {X1,X2, . . .} are jointly normal distributed,

The total prediction error under OLS has three parts:

τ 2: intrinsic error

A(r) =
∑∞

k=r+1 ∆2
k : approx error, ∆2

k = V (Y |~X r−1)− V (Y |~X r )

ε(r , n) = En

[
(β̂r − β∗r )>E(~X r

~X
>
r )(β̂r − β∗r )

]
, where β̂r (or β∗r ) is the

training sample (or population) OLS coefficient.

ε(r , n) =
A(r) + τ 2

n − r − 2

(
n − 2

n
+ r

)
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Double Descent without over-fitting
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Multiple Descents
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Regression Tree with Potentially Infinite Depth

Assume both target and training populations are the same, satisfying

X1,X2, . . .
i .i .d .∼ Bernoulli(1/2), V(Y ) <∞,

and that dependence of Y on {X1,X2, . . .} is arbitrary.

Prediction for a unit with covariates value ~x∞:

µ̂r (~x r ) =


{n(~x r )}−1

∑
i :~x ir=~x r

Yi , if n(~x r ) > 0,

{n(~xk)}−1
∑

i :~x ik=~xk
Yi , if n(~xk) > 0 and n(~xk+1) = 0,

for some 0 ≤ k < r .

The above is the “highest resolution imputation”, given the ordering
of the covariates (which means there are other methods.)
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Decomposition of the prediction error

Model error, which is merely the intrinsic error:

τ2 ≡ E[Var(Y | ~X∞)]

Approximation error:

A(r) =
∞∑

k=r+1

[E{Var(Y | ~X k−1)} − E{Var(Y | ~X k)}]

Estimation error: ε(r , n) = EnE[{µ̂r (~X r )− E(Y | ~X r )}2]

ε(r , n) =
{
A(r) + τ2

}
· En

[
1(n(~1r ) > 0)

n(~1r )

]

+
r−1∑
k=0

{
A(k) + τ2

}
· En

[
1(n(~1k) > 0, n(~1k+1) = 0)

n(~1k)

]

+
r−1∑
k=0

{A(k)− A(r)} · En

[
1(n(~1k) > 0, n(~1k+1) = 0)

]
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Stochastic World τ 2 > 0: Optimal resolution Rn when
Fr = σ{X1, . . . ,Xr} and with n i .i .d . observations

Resolution Loss: A(r) =
∑∞

i=r E[(µi+1 − µi )2|Fr ]

Estimation loss: ε(r , n) = E(µr − µ̂r )2

Table: Optimal Rn and Minimal Loss Ln ≡ PEn − τ 2 (as n→∞)

ε(r, n)
A(r) e−ξr r−ξ log−ξ(r)

rα/n Rn = cn log n cnn
1/(α+ξ) cnn

1/α

logξ/α(n)
(α ≥ 1)

Ln ∝ logα(n)/n n−ξ/(α+ξ) log−ξ(n)

αr/n Rn = log n+log cn
ξ+logα cn log(n) cn log(n)

(α > 1)

Ln ∝ n−ξ/(ξ+logα) log−ξ(n) {log log(n)}−ξ

• cn = O(1) but satisfies different constraints for different settings.
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Deterministic World τ 2 = 0, Optimal resolution Rn

Table: Optimal Rn and Minimal Loss Ln ≡ PEn (as n→∞)

ε(r, n)
A(r) e−ξr r−ξ log−ξ(r)

linear Rn = n − cn cnn cnn
k , k ∈ (0, 1]

regression Ln ∝ ne−ξn n−ξ log−ξ(n)

regression Rn


� or = cn log(n)

= cn log(n)

= cn log(n)

cn log(n) cn log(n)

tree Ln ∝


n−1, ξ > log(2)

log(n)/n, ξ = log(2)

n−ξ/ log(2), ξ < log(2)

log−ξ(n) {log log(n)}−ξ

• cn = O(1) but satisfies different constraints for different settings.
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What about the ordering of covariates?

Suppose a second ordering {k0, k1, . . . , kr} includes the first r −Mr

predictors of the first ordering; i.e., Mr is the minimum integer s.t.
{0, 1, 2, . . . , r −Mr} ⊂ {k0, . . . , kr}

Then the optimal rate under the second ordering is no worse than
that under the first ordering if

Exponential decaying: lim supMr ≤ C

Polynomial decaying: lim supMr/r < 1

Logarithm decaying: Mr = r − r1/ar , where ar = O(1).

• The slower A(r) decays, the less restriction on {Mr}.
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Numerical Illustrations Under Linear Models
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Performance of estimators when τ 2 > 0

Table: Estimated resolution and corresponding prediction error when n = 50.

Type / ropt / PEn(ropt) Method R̂ 95% QR PEn(R̂)/PEn(ropt) 95% QR

Exponential Oracle – – 1.00 [0.92, 1.18]
ropt = 4 CV 6 [2, 20] 1.34 [0.92, 1.72]

PEn(ropt) = 0.5767 UE 7 [2, 47] 1.93 [0.92, 9.23]
IC 47 [46, 47] 19.96 [3.86, 81.00]

Polynomial Oracle – – 1.00 [0.87, 1.24]
ropt = 7 CV 10 [2, 44] 1.37 [0.91, 5.17]

PEn(ropt) = 0.7463 UE 11 [2, 47] 1.62 [0.90, 8.18]
IC 47 [45, 47] 14.77 [2.93, 57.54]

Logarithmic Oracle – – 1.00 [0.89, 1.21]
ropt = 6 CV 9 [2, 41] 1.38 [0.91, 3.97]

PEn(ropt) = 0.9714 UE 10 [2, 46] 1.87 [0.91, 8.04]
IC 47 [46, 47] 14.60 [3.52, 58.19]
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Performance of estimators when τ 2 = 0

Table: Estimated resolution and corresponding prediction error when n = 50.

Type / ropt / PEn(ropt) Method R̂ 95% QR PEn(R̂)/PEn(ropt) 95% QR

Exponential Oracle – – 1.08 [0.12, 4.38]
ropt = 47 CV 46 [44, 47] 3.57 [0.33, 15.54]

PEn(ropt) = 1.90× 10−19 UE 46 [45, 47] 2.30 [0.32, 12.34]
IC 47 [47, 47] 1.40 [0.29, 6.68]

Polynomial Oracle – – 0.99 [0.71, 1.48]
ropt = 23 CV 27 [13, 47] 1.31 [0.73, 4.02]

PEn(ropt) = 0.0816 UE 28 [13, 47] 1.44 [0.74, 4.68]
IC 47 [46, 47] 5.69 [1.28, 23.97]

Logarithmic Oracle – – 1.00 [0.83, 1.34]
ropt = 12 CV 15 [4, 44] 1.38 [0.87, 5.39]

PEn(ropt) = 0.357 UE 16 [5, 47] 1.70 [0.87, 7.72]
IC 47 [46, 47] 10.99 [2.27, 41.35]
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For those who just woke up ...

Big data for Individualized Inference/Prediction

Statistics becomes an approximation scheme: approximating
individuals by proxy populations, not the other way around.

The concept of bias is more critical than (pure) variance, which
exists essentially only at the infinite resolution level.

In the stochastic world, a central task is to determine the appropriate
level of approximation via the bias-variance trade-off.

In the deterministic world, we can put all our eggs in the basket
of bias, when we have great sparsity.

Resolution is a fundamental concept for scientific inference

Low resolutions render operational meaning to (frequentest)
probability and scientific evaluations

Data, inference, decisions, evaluations may all have different
resolutions (Meng, 2021, ”Part II”)
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Detailed Result
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Searching for optimal Rn in the Stochastic World: τ 2 > 0

rn
n = o(1) is necessary for ε(rn, n) = o(1), under which ε(rn, n) � rn

n .

General Result: Let Rn be a rate-optimal resolution, and
Ln = A(Rn) + ε(Rn, n) be the minimal prediction error (excluding τ2).
Assume polynomial estimation error, that is, ε(r , n) � rα/n.

(i) Hard Thresholding: A(r) = 0 for r ≥ r0, and A(r) > 0 for r < r0. Then

Rn � Constant with the constraint that lim inf
n→∞

Rn ≥ r0; and Ln � n−1.

(ii) Exponential A(r) � e−ξr . Then Rn = an log(n) with an satisfying

an � 1 and n1−ξan log−α(n) = O(1); and Ln � n−1 logα(n).

(iii) Polynomial A(r) � r−ξ. Then Rn � n1/(α+ξ); and Ln � n−ξ/(α+ξ).

(iv) Logarithmic A(r) � log−ξ(r). Then Rn = ann
1/α log−ξ/α(n) with an

satisfying an = O(1) and lim supn→∞
[
log−1(n) log(a−1n )

]
< α−1; and

Ln � log−ξ(n).
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Search for Optimal Rn in the Deterministic World: τ 2 = 0

The prediction error simplifies to A(r) · (n+1)(n−2)
n(n−r−2) .

Specific Results (for normal model)
(i) Hard Thresholding: A(r) = 0 for r ≥ r0, and A(r) > 0 for r < r0. The

optimal resolution is any (sequence) Rn such that lim inf
n→∞

Rn ≥ r0 and

Rn ≤ n − 3; and Ln = 0.
(ii) Exponential A(r) � e−ξr . Rn = n − O(1) with Rn ≤ n − 3; and

Ln � ne−ξn.
(iii) Polynomial A(r) � r−ξ. Rn = ann with an satisfying an � 1 and

lim sup an < 1; and Ln � n−ξ.
(iv) Logarithmic A(r) � log−ξ(r). Optimal resolution is any (sequence) Rn

such that lim supRn/n < 1, lim inf log Rn

log n > 0; and Ln � log−ξ(n).
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Search for Optimal Rn in the Stochastic World: τ 2 > 0

2r

n = o(1) is necessary for ε(r , n) = o(1) , under which ε(r , n) � 2r

n .

General Result: Assume exponential estimation error : ε(r , n) � αr

n .

(i) Hard Thresholding: A(r) = 0 for r ≥ r0, and A(r) > 0 for r < r0. Then

Rn � Constant with the constraint that lim inf
n→∞

Rn ≥ r0, and Ln � n−1.

(ii) Exponential A(r) � e−ξr . Then Rn = log(n)+log(an)
log(α)+ξ with an � 1; and

Ln � n−ξ/{log(α)+ξ}.

(iii) Polynomial A(r) � r−ξ. Then Rn = an log(n) with an satisfying an � 1

and nan log(α)−1 logξ(n) = O(1); and Ln � log−ξ(n).

(iv) Logarithmic A(r) � log−ξ(r). Then Rn = an log(n) with an satisfying

lim inf
n→∞

log(an)

log log(n)
> −1, and

{log log(n)}ξ

n1−an log(α)
= O(1);

and Ln � {log log(n)}−ξ.
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Search optimal Rn in the deterministic World: σ2 = 0

Let Ln = A(Rn) + ε(Rn, n) ≤ A(Rn) + ε(Rn, n) ≡ Ln. Specific Results:

(i) Hard Thresholding: A(r) = 0 for r ≥ r0, and A(r) > 0 for r < r0.

Then Rn satisfies that lim inf
n→∞

Rn ≥ r0; and Ln � (1− 2−r0)n.

(ii) Exponential A(r) � e−ξr .

(a) If e−ξ < 1/2, then Rn satisfies ne−ξRn = O(1); and Ln � n−1.
(b) If e−ξ = 1/2, then Rn = an log(n) with an satisfying an � 1 and

n1−an log(2)/ log(n) = O(1); and Ln � n−1 log(n).
(c) If e−ξ > 1/2, then Rn = an log(n) with an satisfying nan−1/ log(2) � 1;

and Ln � n−ξ/ log(2).

(iii) Polynomial A(r) � r−ξ. Then Rn = an log(n) with an satisfying

an � 1 and nan log(2)−1 = O(1); and Ln � log−ξ(n).

(iv) Logarithmic A(r) � log−ξ(r). Then Rn = an log(n) with an satisfying

lim inf
n→∞

log(an)

log log(n)
> −1, and nan log(2)−1 = O(1);

and Ln � {log log(n)}−ξ.
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The Deterministic World without Variance

An asymptotic lower bound for the estimation error ε(r , n) has the
following form.

(i) Hard Thresholding: A(r) = 0 for r ≥ r0, and A(r) > 0 for r < r0.

Then A(rn) + ε(r , n) & (1− 2−r0)n.

(ii) Exponential A(r) � e−ξr . Then A(rn) + ε(r , n) & n−ξ/ log(2).

(iii) Polynomial A(r) � r−ξ. Then A(rn) + ε(r , n) & log−ξ(n).

(iv) Logarithmic A(r) � log−ξ(r). Then A(rn) + ε(r , n) & {log log(n)}−ξ.
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