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Mixture models (notation)

m A set of random variables Yi, ..., Y, are sampled from if

H
(i | 7,0) = > mk(y | 0),
h=1

where 71, ...,y are probabilities and K(y | 0) is a density ( ).
m Mixture models are but tools.
Normal deviate: Larry Wasserman’s blog
“I have decided that mixtures, like tequila, are inherently evil and should be avoided at all costs.” J
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Learning the number of clusters

m An important application of mixture models is . Reliably learning
the number of clusters has entertained a generation of statisticians!

u . The K, does not coincide with the number of components H.
The quantity K, < H is the number of groups among the cluster indicators.

m This is quite evident in Bayesian nonparametrics, where could have H = oco.

m Can we learn the H, from the data? , but under many
and being very careful to prior choices, identifiability issues, etc.

Biased list of references
m Rousseau, J., & Mengersen, K. (2011). Asymptotic behavior of the posterior distribution in overfitted
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m Miller, J. W., & Harrison, M. T. (2014). Inconsistency of Pitman-Yor process mixtures for the number of
components. Journal of Machine Learning Research, 15, 3333-3370.

m Ascolani, F., Lijoi, A., Rebaudo G. & Zanella G. (2022). Clustering consistency with Dirichlet process
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Overclustering and misspecification |
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m Data displayed above are the “true labels

m If the

is wrong, the estimation of K, using a mixture model is unreliable
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Overclustering and misspecification I

Y2

m In practice, one often get

Label_fit

e 1

e 2
° 3
e 4

, compared to Hy. This is exacerbated in

high-dimensional settings when misspecifications are more likely to occur.
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Misspecification of the kernel: does it matter?

L] . Even when the kernel is wrong, the may be reliably estimated.

Reference

m Lijoi, A, Priinster, |., & Walker, S. G. (2005). On consistency of nonparametric normal mixtures for
Bayesian density estimation. Journal of the American Statistical Association, 100(472), 1292-1296.
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Better kernels?

m If the multivariate Gaussian kernel is inappropriate, can’t we use something else? Yes, but
that’s not easy!

m Parametric choices (e.g., multivariate skew-normals, etc.) may the problem
and/or protect against outliers, often at the price of increasing the computational burden.

m What about ? are fully nonparametric
models, but some serious difficulties must be addressed.
References

m Mukhopadhyay, M., Li, D., & Dunson, D. B. (2020). Estimating densities with non-linear support by
using Fisher—Gaussian kernels. Journal of the Royal Statistical Society. Series B: Statistical Methodology,
82(5), 1249-1271.

m Scarpa, B., & Dunson, D. B. (2014). Enriched stick-breaking processes for functional data. Journal of the
American Statistical Association, 109(506), 647-660.
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Generalized Bayes clustering

m An “alternative” to Bayesian mixture models are . The key idea is the
usage of a generic instead of a genuine likelihood.

m A generalized Bayes product partition model is

H
mc| A, Y) W(C)Hexp{ - /\Z Dly;; Y,,)}, c:|C| = H,
h-1 i€cy
where D(y;; Yi) > 0 quantifies the of the ith unit from the hth cluster

m This may result in more robust models (depending on the chosen loss!) and gives you more
modeling freedom. Gibbs posteriors also have intriguing connections with ABc.

Reference

m Miller, J. W., & Dunson, D. B. (2018). Robust Bayesian Inference via Coarsening. Journal of the
American Statistical Association, 1459.

m Rigon, T, Herring, A. H. and Dunson, D. B. (2022+). A generalized Bayes framework for probabilistic
clustering. Submitted.
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Thanks!

m Learning the number of clusters K, is a difficult (but

?JITEAIHSHGAL !) problem that crucially relies on the

i correct specification of the kernel.

m Even when we trust the kernel, issues
complicate the estimation problem.

m Thank you Christian for the very nice talk!
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