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reproducibility and replication: a crisis?

An ad hoc committee of the National Academies of Sciences,
Engineering, and Medicine explored the issues of reproducibility and
replication in scientific and engineering research, focusing on defining
reproducibility and replicability, and examining the extent of
non-reproducibility and non-replicability.



reproducibility and replication in prediction

Word counts:

hypothesis test 27
machine learning 3
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classifier validation via meta-analysis Waldron etal JNCI 2014



CuratedOvarianData Ganzfried etal Databases 2012



classifier cross-study validation Waldron etal JNCI 2014
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training a classifier by meta-analysis Riester etal JNCI 2014

J Natl Cancer Inst, Volume 106, Issue 5, May 2014, dju048, https://doi.org/10.1093/jnci/dju048

The content of this slide may be subject to copyright: please see the slide notes for details.

Figure 4. Combined comparison of our novel meta-analysis gene 
signature with existing prognostic factors and signatures ...



simulatorZ Zhang etal Biostatistics 2018

Generates collections of studies

Within and across study variation is closely matching empirical
collections based on comprehensive reviews.



determinants of CV/CSV gap Zhang etal Biostatistics 2018
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CV and CSV rank methods differently Bernau Bioinformatics 2014

Attention to replicability
requires rethinking existing machine learning principles.



How do we engineer
statistical learning methods
to validate well out of sample?

Use multiple studies for training.

Keywords Meta-analysis, Domain Adaptation
Niche Simple, Scalable and Interpretable Architectures

at the Statistical Learning / Health Interface



Unsupervised multi-study learning



multi-study factor analysis DeVito Biometrics 2018 and AAS 2019
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standard factor analysis on two studies DeVito 2018



recovery of covariance matrices DeVito AAS 2018



multi-study factor analysis: combinatorial Grabski AAS in press
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Supervised multi-study learning



supervised data structure

……

Study 1 Study 2 Study K

Labels    y

Predictors    X



multi-study learning: goals

……

Study 1 Study 2 Study K

Label(s)    y

Predictors    X

Training Studies

Study K+1

“Unseen Domain”

Known

Predictors

Generalist

Training

Specialist

Training

Study 1+




multi-study learning via ensembles Patil & Parmigiani PNAS 2018



"generalist" multi-study stacking Patil & Parmigiani PNAS 2018

……

Study 1 Study 2 Study K

Label(s)

Predictors

(P rows)

Learner 

Trained on Study 1

Learner 

Trained on Study 2

Learner

Trained on Study K

Predictions

(K rows)

Stage I Separately train learners to predict yk on Xk by study
Stage II Jointly train a learner to predict y on T



ovarian cancer studies
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from here

"transition point"
Guan 2019 for random coefficients generating model
Shyr 2022 for boosting

Ramchandran 2019 ensembling forests vs trees
Ramchandran 2021 cross-cluster weighted forests

Loewinger 2019 "study strap"
a continuum between merging and MSS

Ren 2020 multi-study stacking as optimization
no-data-reuse training
asymptotics

Loewinger 2021 optimal ensemble construction



Towards a definition of replicability



decision theoretic definition

Characters (1,2, or 3):
Modeler, prediction or scoring rule φ
Agent, decision problem
Assessor(s), with gold standard studies S1, . . . ,SK

Replicability: Assessor(s) agree that the modeler’s tool,
in the context of a specific decision problem,
is providing similar average utility across studies.



Modeler+Agent

The Modeler+Agent holds:
prediction or scoring rule φ
model π on X and Y
utility U(a, y) : (A× Y)→ R.

An optimal decision function δ∗ satisfies

δ∗(φ(x)) = maxδ∈∆Eπ {U(δ(φ(x)), y)}



Assessor(s)

The prediction rule φ is replicable if its optimal application to the
same decision problem in different data sets leads to
approximately the same average utility to the decision maker.
Formally:

Definition (Absolute ε-replicability)

φ is ε-replicable in absolute utility over S1, . . . ,SK if

max
k ,k ′
|Uk − Uk ′ | ≤ ε

where, for study k , the agent’s utility is, on average,

Uk =
1
nk

nk∑
i=1

U(δ∗(φ(xik )), yik ) (1)



example: Classification Replicability

A classification algorithm ϕ : X → Y
e.g. ϕ = δ∗(φ(x)) = maxδ∈∆Eπ {U(δ(φ(x)), y)} .

Utility function defined directly as

U(ϕ(x), y) : (Y × Y)→ R

Uk defined as

Uk =
1
nk

nk∑
i=1

U(ϕ(xik )), yik ) (2)

and apply Definition 1.

e.g if U(ϕ, y) = Iϕ=y then Uk is the empirical correct
classification proportion in study k
and ε-replicability obtains when this proportion does not vary by
more than ε in any two-study comparison.
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take home messages

"Science of data science"
There is value in building and analyzing

collections of related studies
to understand real world properties of statistical methods.

"Multi-study Learning"
There is value in using multiple studies

to improve built-in replicability.

Much remains to be investigated
from a theoretical point of view.
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