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Machine learning in critical applications

e ML tools make potentially critical decisions: self-driving cars, disease diagnosis, ...

e Involves simultaneous predictions from observations (features), which triggers multiple decisions
e Can we have confidence in these predictions?



Growing pains

El ¥ ® Donate

Machine Bias

There's software used across the country to predict future criminals.
And it's biased against blacks.

by Julia Angwin, Jeff Larson, Surya Mattu and Lauren Kirchner, ProPublica
May 23, 2016




Data ethics 101: convey uncertainty and reliable outcomes

Input

,{? 2 features

Software

v

GPA 3.62

Why don't we see prediction intervals more often?
P{Y € C(X)} ~ 90%

What have we really learned from past data/experience of others?




Today's predictive algorithms

random forests, gradient boosting neural networks

Hidden layer

Xi >y >, €¢—o, Target

- ),

Breiman and Friedman LeCun, Hinton, Bengio, and Rumelhart



Prediction intervals

Training data (X1, Y1),..., (X, Y,) and test point (Xp41,7)
(assumed exchangeable, e.g. i.i.d. from Pxy)

Goal: construct marginal distribution free prediction interval
P{Y,t1 € C(Xpt1)} > 1—«

e Any dist. Pxy (assumed unkown)

e Any sample size n

“Based on the candidate’s high school identifier and GPA, SAT scores, and other attributes, the
college GPA is predicted to fall in the [3.4,3.8] range”



Predicting with confidence?

/.

—-q q
X residuals

Naive approach: look at residuals and build predictive set [fi(x) — g, i(x) + q]



Predicting with confidence?

test

D train

N

-q q
X residuals

Naive approach: look at residuals and build predictive set [fi(x) — g, i(x) + q]
Doesn’t work! residuals much smaller than on test points (extreme for neural nets)

(Jackknife is better, but still fails)



Enter conformal prediction: some pioneers

Predictive inference is possible under no assumptions!

e

Vlradimir Vovk Glenn Shafer

Vovk, Gammerman, Shafer 2005, Algorithmic Learning in a Random World

Papadopoulos, Proedrou, Vovk, Gammerman 2002, Inductive Confidence Machines for Regression



Some evangelists

Jing Lei Larry Wasserman

Lei, Wasserman 2014, Distribution-free prediction bands for non-parametric regression

Lei, G'Sell, Rinaldo, Tibshirani, Wasserman 2018, Distribution-free predictive inference for regression



Some collaborators

Rina Barber Aaditya Ramdas Ryan Tibshirani



Split conformal prediction

Main idea: look at holdout residuals
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Split conformal prediction

Main idea: look at holdout residuals
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Split conformal prediction

Main idea: look at holdout residuals
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Split conformal prediction

Main idea: look at holdout residuals
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Split conformal prediction

Main idea: look at holdout residuals

1.0
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Split conformal prediction

1.0

About 90% of future test points will fall within this band

0.0
1

q is 90th percentile of absolute residuals on calibration
set (not used for model fitting)

1.0

P{Yo1 € [ Xns1) — g, 4(Xnt1) + q]} > 90%

-15

Papadopoulos, Proedrou, Vovk, Gammerman '02




Beyond residuals

» Just used s(x,y) = |y — (x)]
» Predictive set: C(x) = {y : s(x,y) < q}

» Why stop here? Can use any conformity score s(x,y)



Beyond residuals

» Just used s(x,y) = |y — (x)]
» Predictive set: C(x) = {y : s(x,y) < q}

» Why stop here? Can use any conformity score s(x,y)

q is quantile of s(Xj, Y;) on calibration set. Then

P{Yn+1 S C(Xn+1)} Z 11—«




Fixed vs. adaptive intervals

6 —— True low & high quantiles
——- Est. conditional mean
4l Residual quant.




Conformalized quantile regression (CQR) with random forests regression

Split conformal CQR
6 Residual quant. 6 CQR
4 4
> 2 0 W HE : P > 21 O W Y
20 CUDMUUSTENRIER G OG0 00 1 SRR EE 0 CUDBITUERRIBSE S Ot 0“0 RRPFBHOS
0 A 8 s O 0 > IR i 0.0
-2 -2
0 1 2 3 4 5 0 1 2 3 4 5
X X
Avg. Coverage 91.4% Avg. Coverage 91.0%
Avg. Length 2.91 Avg. Length 2.18

CQR is adaptive while split conformal is not



Conformalized quantile regression?

. . Pa(2)
e Quantile regression
l1-a
() = argmin 32 o = FOX)) + R () ;
fer = R
I z
— R(f) is a possible regularizer
— pq is pinball loss Koenker & Bassett 1978 o — Estimated low & high quantiles
e Define conformity scores 4]
S(Xa)/) = max{c}a/2(x)fy,y—él_a/z(x)} > o2
(many variations) o
_2_
e Include y in predictive interval iff g 1 3 I a T
S5(Xnt1,y) < quantile{S(X;, Y)} X

1Romano, Sesia & C. 2019, Conformalized quantile regression



Fit

—— Estimated low & high quantiles

Apply quantile regression

S
0 1 2 3 4

Calibration set




Calibration

61 —— Estimated low & high quantiles 61
4 4
>~ 2 > 2
0 0
-2 -2
0 1 2 3 4 5 0 1 2 3 4 5
X X

Apply quantile regression Calibrate



Conformity scores

conformity scores are signed distances: S; = max{lo(X;) — Y, ¥; — hi(X;)}
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Calibration

C(x) = [lo(x) — Q, hi(x) + Q]
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Predicting utilization of medical services

Medical Expenditure Panel Survey 2015

X; — age, marital status, race, poverty status, functional limitations, health status, health
insurance type, ...

Y; — health care system utilization, reflecting # visits to doctor’s office/hospital, ...
= 16,000 subjects
~ 140 features

——'Hno Agency for Healthcare Research and Quality
- M. Advancing Excellence in Health Care



Results on MEPS data

o NNet regression (MSE or pinball loss)

e Average across 20 random train-test (80%/20%) splits

Marginal coverage

Conditional coverage

—

0.95 0.95
0.90 : : 0.90
0.85 0.85
0.80 0.80
0.75 0.75
0.70 0.70

CQR Residual quant.

Better conditional coverage* and shorter intervals

*measured over the worst slab Cauchois, Gupta & Duchi 2020

CQR

Residual quant.

2.9

2.7

2.5

Length

—

CQR  Residual quant.




Discrete labels romano, sesia & c. 2020

e Estimate conditional probabilities #(y | x)
~ e.g., output of NNet's softmax layer

e Uncalibrated guess

Probability

50%
30%

0%
5% 29

Class label

Sorted class probabilities

Probability

50% Uncalibrated

30%

Class label

Cnaive(x,90%) = {a, b, c}



Calibration via adaptive coverage

50% Uncalibrated ~ Calibrated
guess  90% coverage

Probability
Actual coverage

Class label

Cnave(x,95%) = {a, b, c,d}

Prediction set

C(x) = C™e(x, 7)

100% +
95% T
Wh === 2 | Calibrated
85% = = = = I 90% coverage
80% T Uncalibrated : :
, guess ) 1 \
BIS% 9(I)% 95:%, 63) 1(I)O%

Raw coverage level

“Choose 95% nominal to get 90% coverage on test data”



Examples

. fox gray rain £
v oxX
fox squl rrel squirrel, fox, PUCket, parrer marmot, gquirrel, mink, weasel, beaver, polecat
0.99 0.82 0.03 0.02 0.02 0.30 0.22 0.18  0.16 0.03  0.01



Partial summary

proper training set calibration set
6 6
4 4
> 5 58685 Bas > 2
oo pemRE iR g AP
0 e ""WM“?; g (B " Sy
-2 -2
0 1 2 3 4 5 0 1 2 3
X X

e Training: use n/2 data points to learn model S(x, y)
e Validation: use n/2 data points to learn distrib. of S(X,Y)
e Calibrated prediction: we can predict S (Xp41, Ynt1) ~ can predict Y, 1



Partial summary

proper training set calibration set
6 6
4 4
- 5 > 2

0 B AR

0 01 oo gt e

-2 -2
0 1 2 3 4 5 0 1 2 3
X X

Drawback: sample splitting ~ only use half the data points to fit the model

Full conformal prediction: use all data points for training & validation
Gammerman, Vovk, Vapnik, '98, Vovk, Gammerman, Shafer '05

Jackknife+/CV+
Barber, C., Ramdas and Tibshirani '19




Full conformal: an example
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Full conformal: an example
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Iterate through trial y,
compute p-value



Full conformal: an example

1.0

0.5

Iterate through trial y,
compute p-value
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Full conformal: an example
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Iterate through trial y,
compute p-value
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Full conformal: an example

1.0

-1.0 -0.5 0.0 0.5
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-2.0

p(y)=0.2772

Iterate through trial y,
compute p-value



Full conformal: an example
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-2.0

p(y)=0.2277

Iterate through trial y,
compute p-value



Full conformal: an example

1.0

0.0 0.5

-0.5
|

Iterate through trial y,
compute p-value

-1.0
|

p(y)=0.2277

-15




Full conformal: an example
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Iterate through trial y,
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Full conformal: an example
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Full conformal: an example
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Full conformal: an example
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Full conformal: an example
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Full conformal: an example
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Full conformal: an example
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Iterate through trial y,
compute p-value
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Full conformal: an example

1.0

0.5

0.0

-0.5
|

Iterate through trial y,
compute p-value

-1.0
|

p(y)=0.1089

-15




Full conformal: an example
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Full conformal: an example
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p(y)=0.0693

Iterate through trial y,
compute p-value



Full conformal: an example
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-2.0

p(y)=0.0594

Iterate through trial y,
compute p-value



Full conformal: an example
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-2.0

p(y)=0.0198

Iterate through trial y,
compute p-value



Full conformal: an example
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Full conformal: an example
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Full conformal: an example
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Full conformal: an example
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Full conformal: an example
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Full conformal: an example
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(Full) conformal

e Observe training + test data:
(le Yl) AR (Xn, Y,,) ) (Xn+17 Yn+1)
e Fit model fi to all n+ 1 data points via symmetric algorithm & get residuals
Ri=Yi—u(X),i=1,....,n Roy1= Yo — 11 (Xps1)
e Check if |Rpp1| < [(1 — @) quantile of |Ry|,...,|Ral, |Rnt1]]
N

By exchangeability of Ry, ..., Rot1
this occurs with prob. > 1 — «



(Full) conformal

e Assume we observe training + test data:
(X1, Y1), -5 (Xn, Ya) , (Xat1,¥)
e Fit model i to all n+ 1 data points via symmetric algorithm & get residuals
Ri=Yi—nu(X),i=1,....n, Ryp1=y—p(Xns1)
o Check if |Ry11] < [(1 — «) quantile of |Ri],...,|Rn|,|Rnt1l]
N

By exchangeability of Ry, ..., Roi1
this occurs with prob. > 1 — « if we plug y = Y11



(Full) conformal prediction

e Propose test value y € R
(X17 Yl) PR (Xm Yn) ) (Xn+17y)

e Fit model i to all n+ 1 data points via symmetric algorithm & get residuals
R,':\/,'—,[/Z(Xi),l':l,...7n, Rn+1:y_/a’(Xn+1)
o Check if |Ry11] < [(1 — &) quantile of |Ri],...,|Rn|,|Rnt1l]
. y’z’ff{Yes, No }
e Include y in 6(Xn+1) iff answer is Yes (iff it conforms)
Theorem

]P{Y,,+1 € (,A',, (Xn+1)} = IP {for test value y = Yj;1,answer is Yes} > 1 — «



(Full) conformal prediction

e Propose test value y € R
(X17 Yl) PR (Xm Yn) ) (Xn+17y)

e Fit model i to all n+ 1 data points via symmetric algorithm & get residuals
R,':\/,'—,[/Z(Xi),l':l,...7n, Rﬂ+1:y_/a’(Xn+1)
o Check if |Ry11] < [(1 — &) quantile of |Ri],...,|Rn|,|Rnt1l]
. y‘z‘f{Yes, No }
e Include y in 6(Xn+1) iff answer is Yes (iff it conforms)
Theorem

]P{Y,,+1 € (,A',, (Xn+1)} = IP {for test value y = Yj;1,answer is Yes} > 1 — «

Extends to arbitrary conformity scores computed in a symmetric fashion



Forecasting 2020 US Presidential Election Results County by County



2020 US Presidential Election results county by county




Problem statement

Data (X;, Y;), for each reporting county i

e X; county features (demographic, socio-economic, ... variables)

e Interested in normalized vote change Yi;:

# Republican or Democratic votes R,.(zo) or D Y = (R-(20) —

i i

e Use reported counties to forecast unreported counties

R(19)) /R(19)



Interlude: Election Night at The Washington Post

Variation on weighted conformalized quantile regression used by WP as forecast

2 xhw\

John Cherian Lenny Broner



Pennsylvania

20 ELECTORAL VOTES

LIVE: Donald Trump (R) is leading. An estimated 91 percent of votes have been counted.

M Biden
48.1%

3,051,555

How much of the vote has been counted in
Pennsylvania?

The Post estimates 91% of votes cast have been counted here.

100% 91%

Polls closed (1 day ago) Now

W Trump

50.7%

3,215,969

U.S. House District 10

Perry s I
DePasquale 5.2 I

An estimated 88% of votes have been counted

U.S. House District 17

Lamb 5057 I
Parnell s0.5 I

An estimated 92% of votes have been counted

Pennsylvania has 18 U.S. House races. Jump to results

Note: Map colors on this page won't indicate a lead for a candidate until an estimated 35 percent of the vote has been reported there. Results updated at 3:30 a.m. ET

The Washington Post

5 November 2020, 12:50 AM



Pennsylvania

20 ELECTORAL VOTES

LIVE: Donald Trump (R) is leading. An estimated 91 percent of votes have been counted.

Where the vole could end up

These estimates are calculated based on past election returns as well as votes counted in the presidential race so far. View details

We estimate that 91 percent of the total votes cast have been counted.
We're estimating ranges of possible outcomes, and these are the most
likely ones.

WM counted votes MM Estimates of final vote tally
Lighter colors are less likely outcomes

> 3.1Mvotes

The Washington Post

Breaking down the estimates

Urban counties
m E

1 \ﬁ; Biden _ -
hd s -I
4

Suburban counties
m

.
|

- T

- R |

Rural counties
m 2
i

-2

Biden

- -
"
!!i Trump _I

5 November 2020, 12:50 AM



Problem setup

e Randomly split n = 3076 counties into training |Dyrain| = 1200 and test |Diest| = 1876 samples

~ exchangeability and .*. theorem hold
e For each test sample j € Diest, run the full conformal procedure with Dy,in U {j} to predict Y;

e Coverage target o = 0.1. Nonconformity scores
QR: S(x,y) = max{Gi—a/2(x) — y, ¥ — G 2(x)} for fitted B-conditional quantiles gs(x)
LM: S(x,y) = |y — fi(x)| for linear OLS prediction fi(x) = AT x



Drawing counties

Training Testing



Coverage on test samples

e 1st run: QR 0.8982, LM 0.8955
e 2nd run: QR 0.8945, LM 0.9019

e 3rd run: QR 0.8827, LM 0.8992



Coverage over N = 25 independent runs

e Empirical coverage on Diest over N = 25 independent runs (A represents average across runs)

o
©
n

o
©
L

o
©
Q
>
>

Empirical coverage

o
o)
©

o
fos)
®

LM OR
(linear regression) (quantile regression)



Is my data exchangeable?

Are eastern counties representative of other
counties?




Beyond exchangeability: what if ...?

e Want to deploy model in a new environment? e.g. a diagnostic model trained in America on
French patients

Cauchois et. al. '20, Tibshirani, Barber, C. and Ramdas '19

e Environment is dynamic? e.g. stock market behaviour may shift in response to world events
Gibbs and C. '21 & '22
Barber, C. Ramdas and Tibshirani '22



Adaptive conformal inference

Isaac Gibbs



Online methods?

e Observe data stream {(X:, Y¢)}e=o.1,...
e Perhaps (X;, Y;) ~ P: with P; varying across time

e At time t, want to use past data along with X; to form a prediction set C, for Y,

e Minimum: guarantee that Y; € (.A't at least a 1 — « fraction of the time
e Ambitious: guarantee that P(Y; € ;) =1 — o for all ¢




Adapting conformal to distribution shift

ét(a) = {y : 5:(Xt, ¥) < Quantile (1 — o, {S:(Xe, Yg)}(xhye)epcau)}

Under the i.i.d. assumption the empirical and true distributions will approximately align




Adapting conformal to distribution shift

(.A}(a) = {y : 5:(Xt, ¥) < Quantile (1 — o, {S:(Xe, Yg)}(xe)yé)epcau)}
Distribution shift can cause the true distribution to shift to the right or left

=1-a; quantile 1 777 =1-a, quantile

,/__‘_.L____.
]
]

i
1




Adapting conformal to distribution shift

(,A}(a) = {y : 5:(Xt, ¥) < Quantile (1 — o, {S:(Xe, Yg)}(xe)yé)epcau)}
Distribution shift can cause the true distribution to shift to the right or left

=1-a; quantile 1 777 =1-0; quantile

,/__‘_.L____.
]
]

i
1

Key ldea: Learn of



. *
Learning o
Fit a; using online update
a1 = o +y(a —erry)
err; acts as an unbiased estimate of the current miscoverage probability

1 Y. ¢é
erry = ~
0 Y:e (G



H *
Learning o

Fit a; using online update
apy1 = ap + (o — erry)

err; acts as an unbiased estimate of the current miscoverage probability

1 Y. ¢é
erry = ~
0 Y:e (G

Connection to online learning

Br:=max{f:Y; € ét(at =0)}

Update can be reformulated as online gradient descent wrt. target 8; and pinball loss

pa(2)

fa(ahﬁt) = pa(Bt - at) 1-a




Predicting county level election results: East to West

— Adaptive Alpha — Fixed Alpha — Bernoulli Sequence

0.875-

0.850-

Local Coverage Level

0.825-

500 1000 1500 2000

Time



Distribution free theory

aey1 = ar +y(a —erry)

Additional theory re. P(Y; € C;) 2 1 — v, Yt Gibbs and C. 21



Estimating volatility in the stock market

.- Price(t) — Price(t — 1)\
Volatility V= R? = ( (Pzice(t_ 1() ))

Use Garch(1,1) model to predict 02 = E[V;]...] and get prediction sets using conformity score

St = ‘Vt _6-1.%‘

&7

If the model was perfect S; would be stationary. ..



Estimating

volatility in the stock market

1 t+250
LocalCov; :=1 — — E erry
500
{=t—250+1
— Adaptive Alpha — Fixed Alpha Bernoulli Sequence
Nvidia AMD

Local Coverage Level
?
"is
égﬁ
l's
fg
“.%

BlackBerry Fannie Mae

Local Coverage Level

2005 2010 2015 2020 2000 2005 2010 2015 2020



Accounting for unknown or changing shift size

Previous methodology/theory require v a priori



Accounting for unknown or changing shift size

Previous methodology/theory require y a priori

New algorithm:
1. Start with candidate gammas {V°}ece ~ {af}ece

2. To judge af use past losses {{,(0s, aS)}s<+ to construct weights w¢

3. Qutput o := > #af
e/ Wt



Accounting for unknown or changing shift size

Previous methodology/theory require y a priori

New algorithm:
1. Start with candidate gammas {V°}ece ~ {af}ece

2. To judge af use past losses {{,(0s, aS)}s<+ to construct weights w¢

3. Qutput o := > #af
e/ Wt

Obtain w; by
e e o e’
i = (1 D) erplntale 0w + TS wi



Accounting for unknown or changing shift size

Previous methodology/theory require y a priori

New algorithm:
1. Start with candidate gammas {V°}ece ~ {af}ece

2. To judge af use past losses {{,(0s, aS)}s<+ to construct weights w¢

3. Qutput o := > Z":’i:we,af
Obtain w; by

g ’
W = (1= o) exp(=nla(Be ad)wi + 7 > ow

Lots of theory Gibbs and C. 22



Returning to stock example

Results for new algorithm same as for gradient descent

— Adaptive Alpha — Fixed Alpha -~ Bernoulli Sequence

Nvidia AMD
D 0.95-
>
)
|
Q A

A J

gogo-ﬂw-ﬂ—’-— m’ oyl W 'M_ -WW' ==
9] bt T
>
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]
© 0.85-
(8]
o
]

BlackBerry Fannie Mae
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Time



Returning to stock example

In the stock market example used conformity score

Ve

51.‘ ~AD
Ot
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Returning to stock example

In the stock market example used conformity score

Ve

51.‘ ~AD
Ot

and modelled V; ~ 02x? so hopefully S; ~ |y — 1| is stationary

A bad idea would be to use B
Se= |V — 3f| ~ 0?|X§ =1

which is far from stationary



Results with "bad” conformity score

Gradient descent: New Algorithm:

Adaptive Alpha — Fixed Alpha — Bernoulli Sequence Adaptive Alpha — Fixed Alpha — Bernoulli Sequence
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Summary

New tools for uncertainty quantification

No modeling assumptions whatsoever (except for exchangeability)

Explosion of interest in academia & industry
— Thousands of papers/year

— Conformalized predictions in production at major tech companies

e Resources available online

Breiman Award Lecture at Neurips 2022 will exclusively feature conformal prediction



