#### Conformal Prediction in 2022

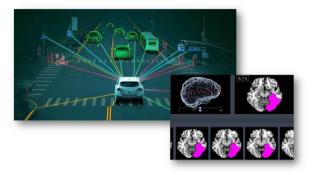
#### Emmanuel Candès



Conference on Statistics for complex data, Padova, September 2022

#### Machine learning in critical applications

• ML tools make potentially critical decisions: self-driving cars, disease diagnosis, ...

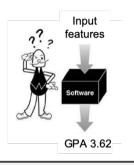


- Involves simultaneous predictions from observations (features), which triggers multiple decisions
- Can we have confidence in these predictions?

#### Growing pains



## Data ethics 101: convey uncertainty and reliable outcomes



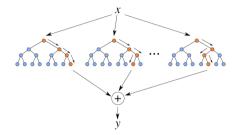
Why don't we see prediction intervals more often?

$$\mathbb{P}\{Y \in C(X)\} \approx 90\%$$

What have we really learned from past data/experience of others?

# Today's predictive algorithms

random forests, gradient boosting

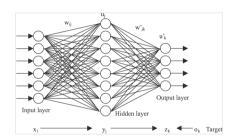






Breiman and Friedman

#### neural networks







LeCun, Hinton, Bengio, and Rumelhart

#### Prediction intervals

Training data  $(X_1, Y_1), \ldots, (X_n, Y_n)$  and test point  $(X_{n+1}, ?)$  (assumed exchangeable, e.g. i.i.d. from  $P_{XY}$ )

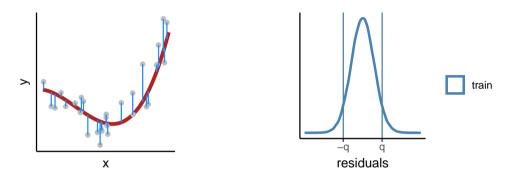
#### Goal: construct marginal distribution free prediction interval

$$\mathbb{P}\{Y_{n+1}\in C(X_{n+1})\}\geq 1-\alpha$$

- Any dist.  $P_{XY}$  (assumed unkown)
- Any sample size n

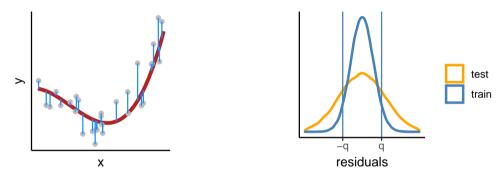
"Based on the candidate's high school identifier and GPA, SAT scores, and other attributes, the college GPA is predicted to fall in the [3.4,3.8] range"

## Predicting with confidence?



Naive approach: look at residuals and build predictive set  $[\hat{\mu}(x)-q,\hat{\mu}(x)+q]$ 

## Predicting with confidence?



**Naive approach:** look at residuals and build predictive set  $[\hat{\mu}(x) - q, \hat{\mu}(x) + q]$ 

Doesn't work! residuals much smaller than on test points (extreme for neural nets)

(Jackknife is better, but still fails)

#### Enter conformal prediction: some pioneers

#### Predictive inference is possible under no assumptions!



Vladimir Vovk

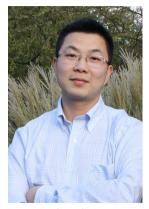


Glenn Shafer

Vovk, Gammerman, Shafer 2005, Algorithmic Learning in a Random World

Papadopoulos, Proedrou, Vovk, Gammerman 2002, Inductive Confidence Machines for Regression

#### Some evangelists



Jing Lei



Larry Wasserman

Lei, Wasserman 2014, Distribution-free prediction bands for non-parametric regression
Lei, G'Sell, Rinaldo, Tibshirani, Wasserman 2018, Distribution-free predictive inference for regression

#### Some collaborators



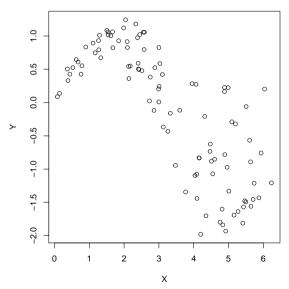
Rina Barber

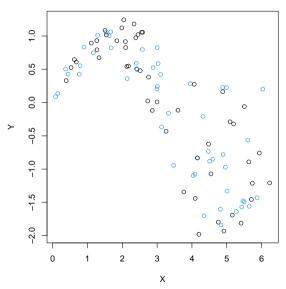


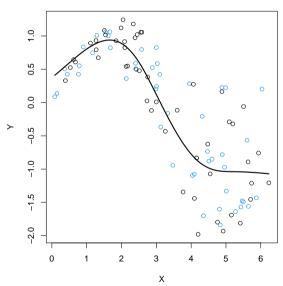
Aaditya Ramdas

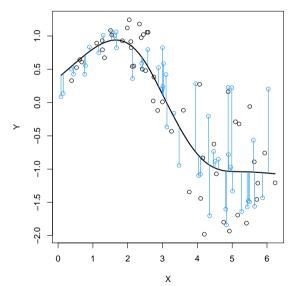


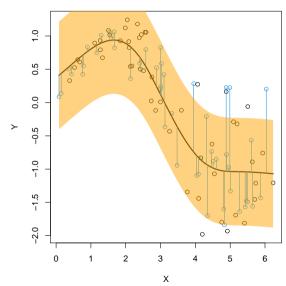
Ryan Tibshirani

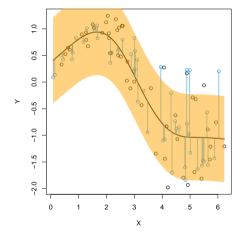












About 90% of future test points will fall within this band

 $\boldsymbol{q}$  is 90th percentile of absolute residuals on calibration set (not used for model fitting)

$$\mathbb{P}\left\{Y_{n+1} \in [\hat{\mu}(X_{n+1}) - q, \hat{\mu}(X_{n+1}) + q]\right\} \ge 90\%$$

Papadopoulos, Proedrou, Vovk, Gammerman '02

## Beyond residuals

- ▶ Just used  $s(x, y) = |y \hat{\mu}(x)|$
- ▶ Predictive set:  $C(x) = \{y : s(x, y) \le q\}$
- ▶ Why stop here? Can use any conformity score s(x, y)

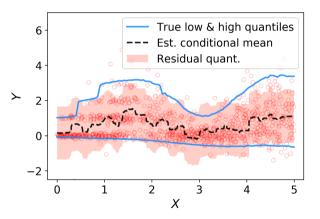
## Beyond residuals

- ▶ Just used  $s(x, y) = |y \hat{\mu}(x)|$
- ▶ Predictive set:  $C(x) = \{y : s(x, y) \le q\}$
- ▶ Why stop here? Can use any conformity score s(x, y)

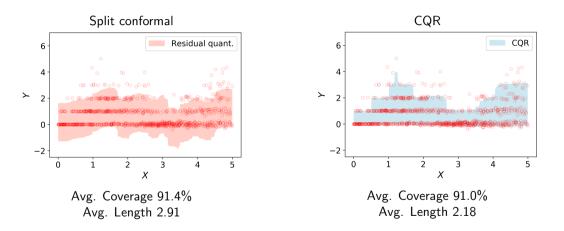
q is quantile of 
$$s(X_i, Y_i)$$
 on calibration set. Then

$$\mathbb{P}\left\{Y_{n+1}\in C(X_{n+1})\right\}\geq 1-\alpha$$

## Fixed vs. adaptive intervals



## Conformalized quantile regression (CQR) with random forests regression



CQR is adaptive while split conformal is not

# Conformalized quantile regression<sup>1</sup>

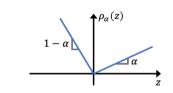
Quantile regression

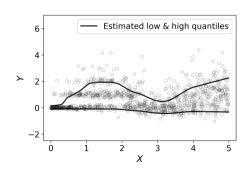
$$f(\cdot) = \underset{f \in \mathcal{F}}{\operatorname{argmin}} \sum_{i} \rho_{\alpha}(Y_{i} - f(X_{i})) + \mathcal{R}(f)$$

- $-\mathcal{R}(f)$  is a possible regularizer
- $ho_{lpha}$  is pinball loss Koenker & Bassett 1978
- Define conformity scores

$$S(x,y)=\max\{\hat{q}_{lpha/2}(x)-y,y-\hat{q}_{1-lpha/2}(x)\}$$
 (many variations)

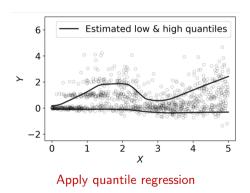
• Include y in predictive interval iff  $S(X_{n+1}, y) < \text{quantile}\{S(X_i, Y_i)\}$ 





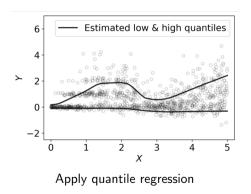
<sup>&</sup>lt;sup>1</sup>Romano, Sesia & C. 2019, Conformalized quantile regression

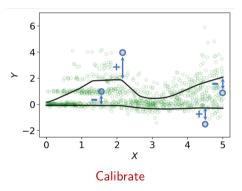
#### Fit



Calibration set

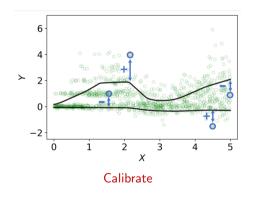
#### Calibration

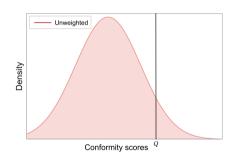




#### Conformity scores

conformity scores are signed distances:  $S_i \triangleq \max\{lo(X_i) - Y_i, Y_i - hi(X_i)\}$ 

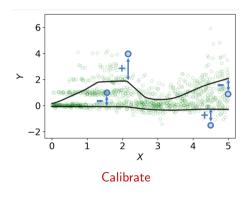


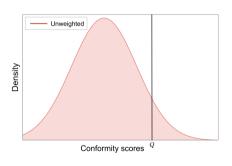


Histogram

#### Calibration

$$C(x) = [\log(x) - Q, \ \operatorname{hi}(x) + Q]$$





Histogram

#### Predicting utilization of medical services

#### Medical Expenditure Panel Survey 2015

 $X_i$  – age, marital status, race, poverty status, functional limitations, health status, health insurance type, ...

 $Y_i$  – health care system utilization, reflecting # visits to doctor's office/hospital, ...

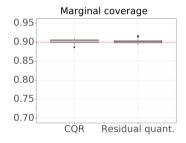
 $\approx 16,000 \text{ subjects}$ 

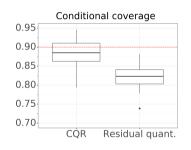
 $\approx 140$  features

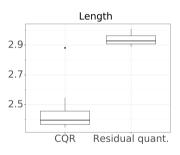


#### Results on MEPS data

- NNet regression (MSE or pinball loss)
- $\bullet$  Average across 20 random train-test (80%/20%) splits





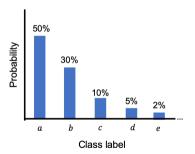


Better conditional coverage\* and shorter intervals

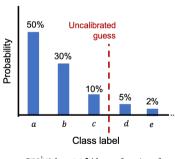
<sup>\*</sup>measured over the worst slab Cauchois, Gupta & Duchi 2020

#### Discrete labels Romano, Sesia & C. 2020

- Estimate conditional probabilities  $\hat{\pi}(y \mid x)$   $\rightsquigarrow$  e.g., output of NNet's softmax layer
- Uncalibrated guess

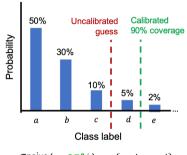


Sorted class probabilities

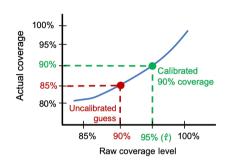


$$C^{\mathsf{naive}}(x,90\%) = \{a,b,c\}$$

## Calibration via adaptive coverage



$$C^{\mathsf{naive}}(x, 95\%) = \{a, b, c, d\}$$



#### Prediction set

$$C(x) = C^{\mathsf{naive}}(x, \hat{\tau})$$

"Choose 95% nominal to get 90% coverage on test data"

#### Examples

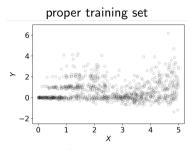


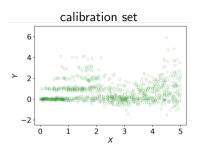




fox gray squirrel squirrel, fox, bucket, barrel 0.30 fox squirrel, mink, weasel, beaver, polecat 0.22 0.03 0.02 fox

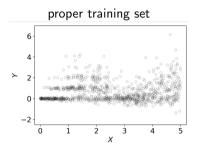
#### Partial summary

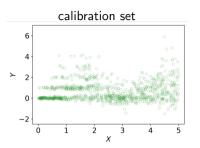




- Training: use n/2 data points to learn model S(x,y)
- Validation: use n/2 data points to learn distrib. of S(X, Y)
- Calibrated prediction: we can predict  $S(X_{n+1}, Y_{n+1}) \sim$  can predict  $Y_{n+1}$

#### Partial summary





Drawback: sample splitting  $\leadsto$  only use half the data points to fit the model

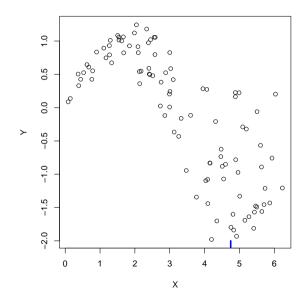
Full conformal prediction: use all data points for training & validation

Gammerman, Vovk, Vapnik, '98, Vovk, Gammerman, Shafer '05

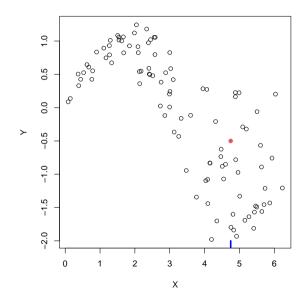
Jackknife+/CV+

Barber, C., Ramdas and Tibshirani '19

# Full conformal: an example

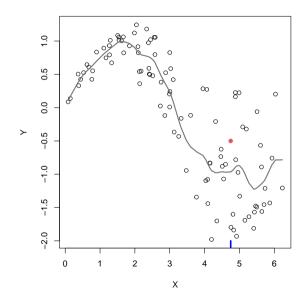


## Full conformal: an example

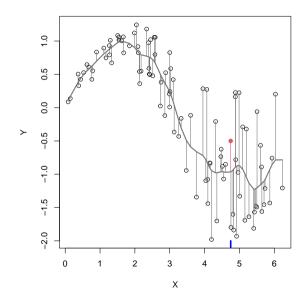


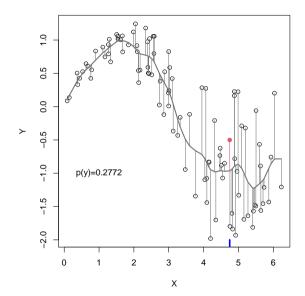
Iterate through trial *y*, compute p-value

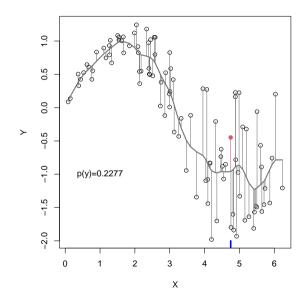
# Full conformal: an example

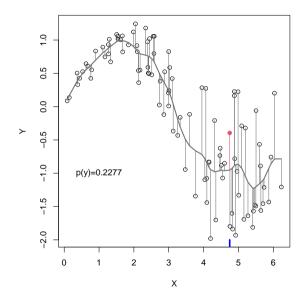


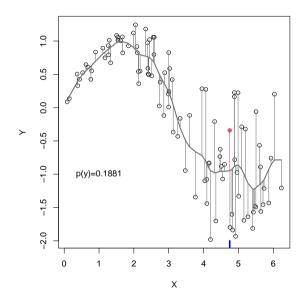
Iterate through trial *y*, compute p-value

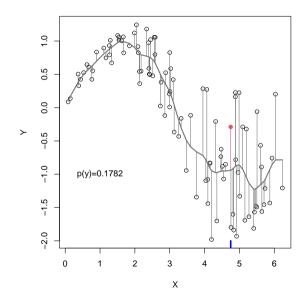


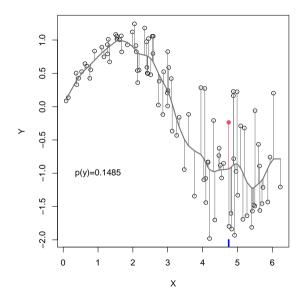


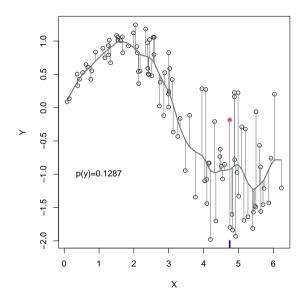


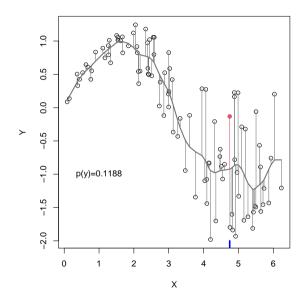


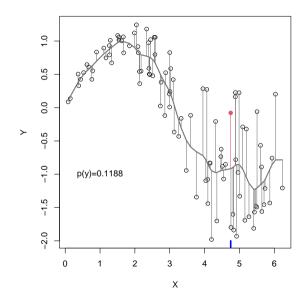


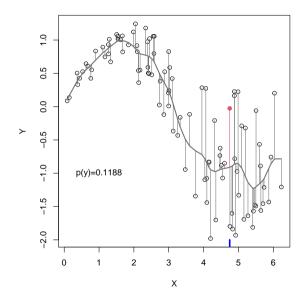


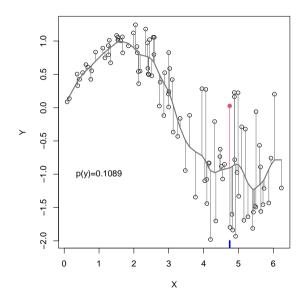


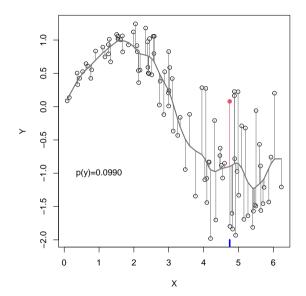


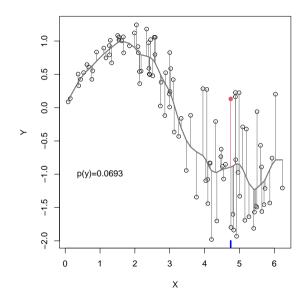


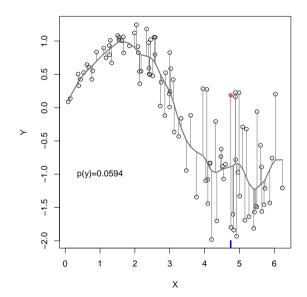


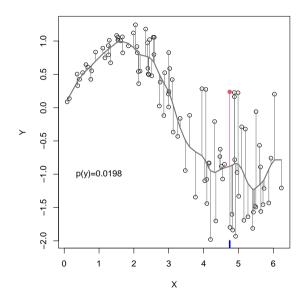


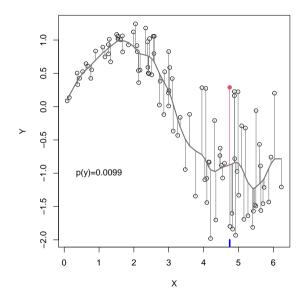


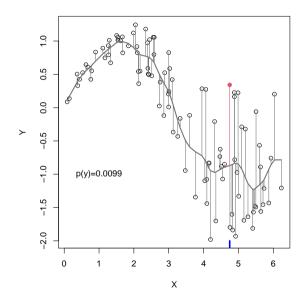


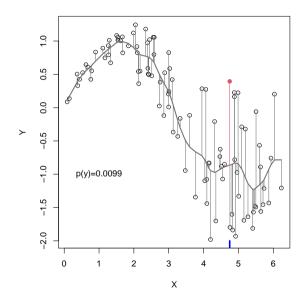


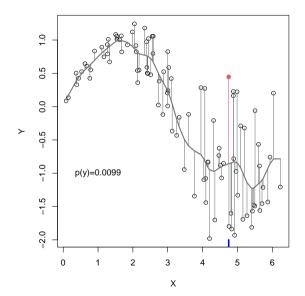


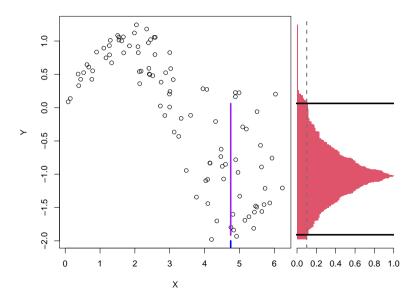




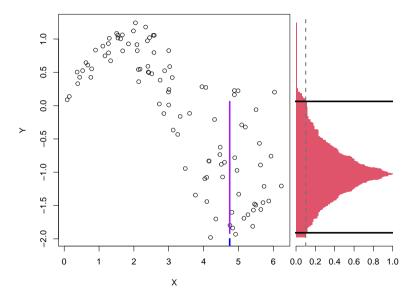








Threshold p-values to get full conformal interval



 $\begin{array}{l} \textbf{Drawback:} \ \ computationally \\ expensive \sim \\ \textbf{Jackknife} + / \textbf{CV} + \end{array}$ 

Barber, C., Ramdas and Tibshirani '19

### (Full) conformal

• Observe training + test data:

$$(X_1, Y_1), \ldots, (X_n, Y_n), (X_{n+1}, Y_{n+1})$$

• Fit model  $\widehat{\mu}$  to all n+1 data points via symmetric algorithm & get residuals

$$R_{i} = Y_{i} - \widehat{\mu}(X_{i}), i = 1, ..., n, \quad R_{n+1} = Y_{n+1} - \widehat{\mu}(X_{n+1})$$

• Check if  $|R_{n+1}| \leq [(1-\alpha)$  quantile of  $|R_1|, \ldots, |R_n|, |R_{n+1}|]$ 

By exchangeability of  $R_1, \ldots, R_{n+1}$  this occurs with prob.  $\geq 1 - \alpha$ 

### (Full) conformal

• Assume we observe training + test data:

$$(X_1, Y_1), \ldots, (X_n, Y_n), (X_{n+1}, y)$$

• Fit model  $\widehat{\mu}$  to all n+1 data points via symmetric algorithm & get residuals

$$R_i = Y_i - \widehat{\mu}(X_i), i = 1, \dots, n, \quad R_{n+1} = \mathbf{y} - \widehat{\mu}(X_{n+1})$$

• Check if  $|R_{n+1}| \leq [(1-\alpha)$  quantile of  $|R_1|, \ldots, |R_n|, |R_{n+1}|]$ 

By exchangeability of  $R_1, \ldots, R_{n+1}$ 

this occurs with prob.  $\geq 1 - \alpha$  if we plug  $y = Y_{n+1}$ 

# (Full) conformal prediction

• Propose test value  $y \in \mathbb{R}$ 

$$(X_1, Y_1), \ldots, (X_n, Y_n), (X_{n+1}, y)$$

• Fit model  $\widehat{\mu}$  to all n+1 data points via symmetric algorithm & get residuals

$$R_{i} = Y_{i} - \widehat{\mu}(X_{i}), i = 1, \ldots, n, \quad R_{n+1} = \mathbf{y} - \widehat{\mu}(X_{n+1})$$

- Check if  $|R_{n+1}| \leq [(1-\alpha)$  quantile of  $|R_1|, \ldots, |R_n|, |R_{n+1}|]$
- $y \stackrel{\widehat{\mu},\alpha}{\leadsto} \{ \text{ Yes, No } \}$
- Include y in  $\widehat{C}(X_{n+1})$  iff answer is Yes (iff it conforms)

#### Theorem

$$\mathbb{P}\left\{Y_{n+1} \in \widehat{C}_n\left(X_{n+1}
ight)
ight\} = \mathbb{P}\left\{ ext{for test value } y = Y_{n+1}, ext{answer is Yes}
ight\} \geq 1 - lpha$$

# (Full) conformal prediction

• Propose test value  $y \in \mathbb{R}$ 

$$(X_1, Y_1), \ldots, (X_n, Y_n), (X_{n+1}, \underline{y})$$

• Fit model  $\widehat{\mu}$  to all n+1 data points via symmetric algorithm & get residuals

$$R_{i} = Y_{i} - \widehat{\mu}(X_{i}), i = 1, \ldots, n, \quad R_{n+1} = \mathbf{y} - \widehat{\mu}(X_{n+1})$$

- Check if  $|R_{n+1}| \leq [(1-\alpha)$  quantile of  $|R_1|, \ldots, |R_n|, |R_{n+1}|]$
- $y \stackrel{\widehat{\mu},\alpha}{\leadsto} \{ \text{ Yes, No } \}$
- Include y in  $\widehat{C}(X_{n+1})$  iff answer is Yes (iff it conforms)

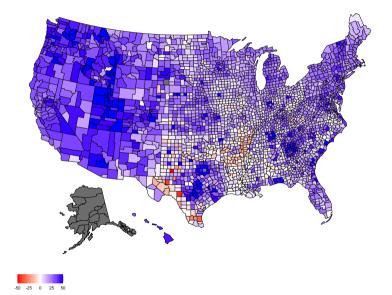
#### Theorem

$$\mathbb{P}\left\{Y_{n+1}\in\widehat{\mathcal{C}}_{n}\left(X_{n+1}
ight)
ight\}=\mathbb{P}\left\{ ext{for test value }y=Y_{n+1}, ext{answer is Yes}
ight\}\geq1-lpha$$

Extends to arbitrary conformity scores computed in a symmetric fashion

Forecasting 2020 US Presidential Election Results County by County

# 2020 US Presidential Election results county by county



#### Problem statement

Data  $(X_i, Y_i)$ , for each reporting county i

- X<sub>i</sub> county features (demographic, socio-economic, ... variables)
- Interested in normalized vote change  $Y_i$ :

# Republican or Democratic votes 
$$R_i^{(20)}$$
 or  $D_i^{(20)}$   $Y_i = (R_i^{(20)} - R_i^{(16)})/R_i^{(16)}$ 

Use reported counties to forecast unreported counties

# Interlude: Election Night at *The Washington Post*

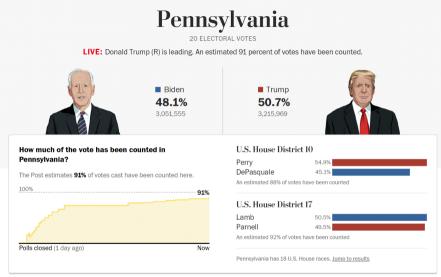
Variation on weighted conformalized quantile regression used by WP as forecast



John Cherian



Lenny Broner



Note: Map colors on this page won't indicate a lead for a candidate until an estimated 35 percent of the vote has been reported there. Results updated at 3:30 a.m. ET

# Pennsylvania

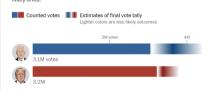
20 FLECTORAL VOTES

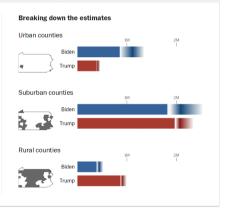
LIVE: Donald Trump (R) is leading. An estimated 91 percent of votes have been counted.

These estimates are calculated based on past election returns as well as votes counted in the presidential race so far, View details

#### Where the vote could end up

We estimate that 91 percent of the total votes cast have been counted.
We're estimating ranges of possible outcomes, and these are the most likely ones.





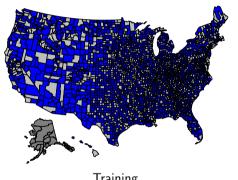
#### Problem setup

- Randomly split n=3076 counties into training  $|\mathcal{D}_{\mathsf{train}}|=1200$  and test  $|\mathcal{D}_{\mathsf{test}}|=1876$  samples  $\sim$  exchangeability and  $\therefore$  theorem hold
- ullet For each test sample  $j \in \mathcal{D}_{\mathsf{test}}$ , run the full conformal procedure with  $\mathcal{D}_{\mathsf{train}} \cup \{j\}$  to predict  $Y_j$
- ullet Coverage target lpha= 0.1. Nonconformity scores

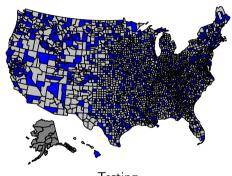
QR: 
$$S(x,y) = \max\{\hat{q}_{1-\alpha/2}(x) - y, y - \hat{q}_{\alpha/2}(x)\}$$
 for fitted  $\beta$ -conditional quantiles  $\hat{q}_{\beta}(x)$ 

LM: 
$$S(x,y) = |y - \hat{\mu}(x)|$$
 for linear OLS prediction  $\hat{\mu}(x) = \hat{\theta}^{\top} x$ 

# Drawing counties



Training



Testing

### Coverage on test samples

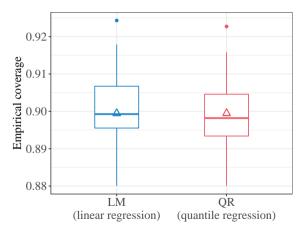
• 1st run: QR 0.8982, LM 0.8955

• 2nd run: QR 0.8945, LM 0.9019

• 3rd run: QR 0.8827, LM 0.8992

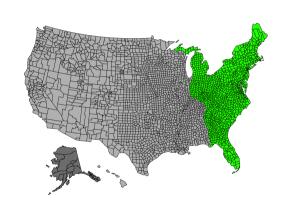
### Coverage over N = 25 independent runs

ullet Empirical coverage on  $\mathcal{D}_{\text{test}}$  over  $\emph{N}=25$  independent runs ( $\Delta$  represents average across runs)



## Is my data exchangeable?

Are eastern counties representative of other counties?



Beyond exchangeability: what if ...?

• Want to deploy model in a new environment? e.g. a diagnostic model trained in America on French patients

Cauchois et. al. '20, Tibshirani, Barber, C. and Ramdas '19

• Environment is dynamic? e.g. stock market behaviour may shift in response to world events Gibbs and C. '21 & '22

Barber, C. Ramdas and Tibshirani '22

### Adaptive conformal inference



Isaac Gibbs

### Online methods?

- Observe data stream  $\{(X_t, Y_t)\}_{t=0,1,...}$
- Perhaps  $(X_t, Y_t) \sim P_t$  with  $P_t$  varying across time
- ullet At time t, want to use past data along with  $X_t$  to form a prediction set  $\hat{C}_t$  for  $Y_t$

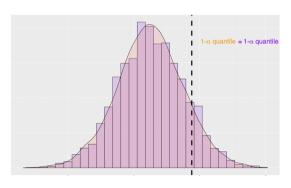
#### Goals

- Minimum: guarantee that  $Y_t \in \hat{C}_t$  at least a 1-lpha fraction of the time
- Ambitious: guarantee that  $\mathbb{P}(Y_t \in \hat{C}_t) \cong 1 \alpha$  for all t

## Adapting conformal to distribution shift

$$\hat{\mathcal{C}}_t(\alpha) := \left\{ y : S_t(X_t, y) \leq \mathsf{Quantile}\left(1 - \alpha, \{S_t(X_\ell, Y_\ell)\}_{(X_\ell, Y_\ell) \in \mathcal{D}_{\mathsf{cal}, t}}\right) \right\}$$

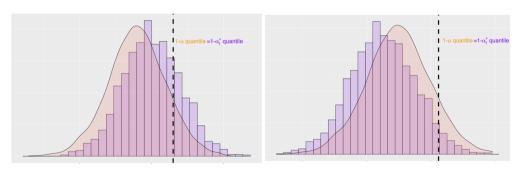
Under the i.i.d. assumption the empirical and true distributions will approximately align



## Adapting conformal to distribution shift

$$\hat{\mathcal{C}}_t(\alpha) := \left\{ y : S_t(X_t, y) \leq \mathsf{Quantile}\left(1 - \alpha, \{S_t(X_\ell, Y_\ell)\}_{(X_\ell, Y_\ell) \in \mathcal{D}_{\mathsf{cal}, t}}\right) \right\}$$

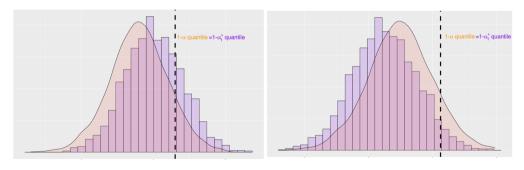
Distribution shift can cause the true distribution to shift to the right or left



## Adapting conformal to distribution shift

$$\hat{\mathcal{C}}_t(\alpha) := \left\{ y : S_t(X_t, y) \leq \mathsf{Quantile}\left(1 - \alpha, \{S_t(X_\ell, Y_\ell)\}_{(X_\ell, Y_\ell) \in \mathcal{D}_{\mathsf{cal}, t}}\right) \right\}$$

Distribution shift can cause the true distribution to shift to the right or left



**Key Idea:** Learn  $\alpha_t^*$ 

### Learning $\alpha_t^*$

Fit  $\alpha_t$  using online update

$$\alpha_{t+1} := \alpha_t + \gamma(\alpha - \mathsf{err}_t)$$

 $err_t$  acts as an unbiased estimate of the current miscoverage probability

$$\mathsf{err}_t := egin{cases} 1 & Y_t 
otin \hat{\mathcal{C}}_t \ 0 & Y_t 
otin \hat{\mathcal{C}}_t \end{cases}$$

## Learning $\alpha_t^*$

Fit  $\alpha_t$  using online update

$$\alpha_{t+1} := \alpha_t + \gamma(\alpha - \mathsf{err}_t)$$

 $err_t$  acts as an unbiased estimate of the current miscoverage probability

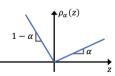
$$\mathsf{err}_t := egin{cases} 1 & Y_t 
otin \hat{\mathcal{C}}_t \ 0 & Y_t 
otin \hat{\mathcal{C}}_t \end{cases}$$

#### Connection to online learning

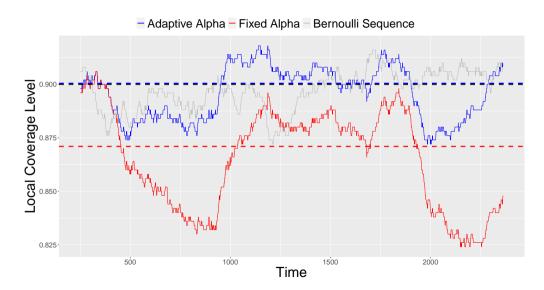
$$\beta_t := \max\{\beta : Y_t \in \hat{C}_t(\alpha_t := \beta)\}$$

Update can be reformulated as online gradient descent wrt. target  $\beta_t$  and pinball loss

$$\ell_{\alpha}(\alpha_t, \beta_t) = \rho_{\alpha}(\beta_t - \alpha_t)$$



## Predicting county level election results: East to West



## Distribution free theory

$$\alpha_{t+1} = \alpha_t + \gamma(\alpha - \mathsf{err}_t)$$

Under no assumptions on the data-generating process

$$\left|\frac{1}{T}\sum_{t=1}^{T}\mathsf{err}_t - \alpha\right| \leq \frac{\max\{\alpha_1, 1 - \alpha_1\} + \gamma}{T\gamma}$$

and thus

$$\lim_{T \to \infty} \frac{1}{T} \sum_{t=1}^{I} \operatorname{err}_{t} \stackrel{a.s.}{=} \alpha$$

Additional theory re.  $\mathbb{P}(Y_t \in \hat{\mathcal{C}}_t) \cong 1-lpha, \ orall t$  Gibbs and C. '21

## Estimating volatility in the stock market

Volatility 
$$V_t = R_t^2 = \left(\frac{\mathsf{Price}(t) - \mathsf{Price}(t-1)}{\mathsf{Price}(t-1)}\right)^2$$

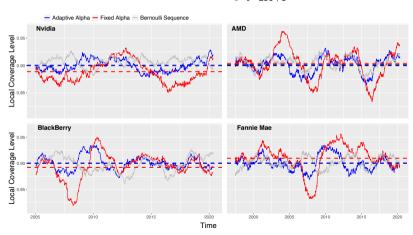
Use  $\operatorname{Garch}(1,1)$  model to predict  $\sigma_t^2 = \mathbb{E}[V_t|\ldots]$  and get prediction sets using conformity score

$$S_t := rac{|V_t - \hat{\sigma}_t^2|}{\hat{\sigma}_t^2}$$

If the model was perfect  $S_t$  would be stationary...

## Estimating volatility in the stock market

$$\mathsf{LocalCov}_t := 1 - rac{1}{500} \sum_{\ell=t-250+1}^{t+250} \mathsf{err}_\ell$$



Previous methodology/theory require  $\gamma$  a priori

Previous methodology/theory require  $\gamma$  a priori

#### New algorithm:

- 1. Start with candidate gammas  $\{\gamma^e\}_{e \in E} \quad \leadsto \quad \{\alpha^e_t\}_{e \in E}$
- 2. To judge  $\alpha_t^e$  use past losses  $\{\ell_{\alpha}(\beta_s,\alpha_s^e)\}_{s< t}$  to construct weights  $w_t^e$
- 3. Output  $\alpha_t := \sum_{e \in E} \frac{w_t^e}{\sum_{e'} w_t^{e'}} \alpha_t^e$

Previous methodology/theory require  $\gamma$  a priori

#### New algorithm:

- 1. Start with candidate gammas  $\{\gamma^e\}_{e \in E} \quad \leadsto \quad \{\alpha^e_t\}_{e \in E}$
- 2. To judge  $\alpha_t^e$  use past losses  $\{\ell_{\alpha}(\beta_s, \alpha_s^e)\}_{s < t}$  to construct weights  $w_t^e$
- 3. Output  $\alpha_t := \sum_{e \in E} \frac{w_t^e}{\sum_{c'} w_t^{e'}} \alpha_t^e$

Obtain  $w_t^e$  by

$$w_{t+1}^e := (1 - \sigma) \exp(-\eta \ell_{\alpha}(\beta_t, \alpha_t)) w_t^e + \frac{\sigma}{|E|} \sum_i w_t^{e'}$$

Previous methodology/theory require  $\gamma$  a priori

#### New algorithm:

- 1. Start with candidate gammas  $\{\gamma^e\}_{e \in E} \quad \leadsto \quad \{\alpha^e_t\}_{e \in E}$
- 2. To judge  $\alpha_t^e$  use past losses  $\{\ell_{\alpha}(\beta_s, \alpha_s^e)\}_{s < t}$  to construct weights  $w_t^e$
- 3. Output  $\alpha_t := \sum_{e \in E} \frac{w_t^e}{\sum_{e'} w_t^{e'}} \alpha_t^e$

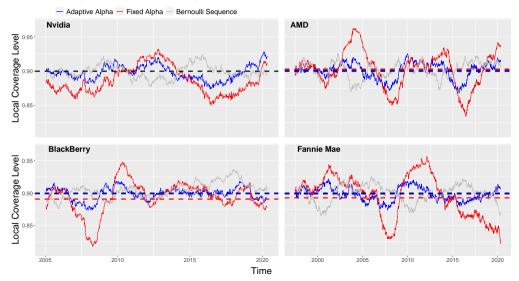
Obtain  $w_t^e$  by

$$w_{t+1}^e := (1 - \sigma) \exp(-\eta \ell_{\alpha}(\beta_t, \alpha_t)) w_t^e + \frac{\sigma}{|E|} \sum_i w_t^{e'}$$

Lots of theory Gibbs and C. '22

## Returning to stock example

Results for new algorithm same as for gradient descent



## Returning to stock example

In the stock market example used conformity score

$$S_t = \frac{|V_t - \hat{\sigma}_t^2|}{\hat{\sigma}_t^2}$$

and modelled  $V_t \sim \sigma_t^2 \chi_1^2$  so hopefully  $S_t \stackrel{.}{\sim} |\chi_1^2 - 1|$  is stationary

## Returning to stock example

In the stock market example used conformity score

$$S_t = \frac{|V_t - \hat{\sigma}_t^2|}{\hat{\sigma}_t^2}$$

and modelled  $V_t \sim \sigma_t^2 \chi_1^2$  so hopefully  $S_t \stackrel{.}{\sim} |\chi_1^2 - 1|$  is stationary

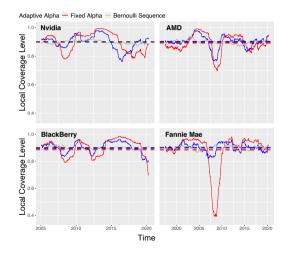
A bad idea would be to use

$$\tilde{S}_t = |V_t - \hat{\sigma}_t^2| \stackrel{\cdot}{\sim} \sigma_t^2 |\chi_1^2 - 1|$$

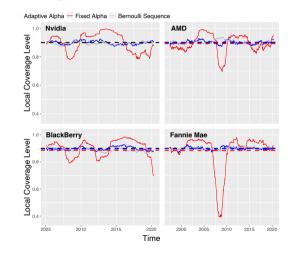
which is far from stationary

## Results with "bad" conformity score

#### **Gradient descent:**



#### **New Algorithm:**



### Summary

- New tools for uncertainty quantification
- No modeling assumptions whatsoever (except for exchangeability)
- Explosion of interest in academia & industry
  - Thousands of papers/year
  - Conformalized predictions in production at major tech companies
  - **–** ..
- Resources available online

Breiman Award Lecture at Neurips 2022 will exclusively feature conformal prediction