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Mixtures for clustering

▶ Clustering is inherently an ill-posed problem
▶ For example: cluster by color (6 clusters),

▶ Each arrangement is potentially correct as
there is no ground “truth”

▶ Therefore, estimating the number of groups
in the sample (or in the population) or the
number of components is particularly difficult

▶ Also, recall that these estimates can be
different (e.g., McCullagh and Yang, 2008;
Miller and Harrison, 2018)

▶ Clearly “all models are wrong"...
▶ When we analyze real data, this aspect should not be ignored: in particular

when we improperly advocate theorems that are developed under different
conditions (e.g., the “true” distribution is not a mixture, ignore sample size...)
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Mixtures for density estimation

▶ Mixture models are also widely used for
density estimation and density regression

▶ A mixture distribution function can be made
arbitrarily close to any density, allowing the
number of components to grow
(Epanechnikov, 1969)

▶ Large p: for computational simplicity, little
structure is imposed within each component
(often conditional independence among
variables, given cluster membership)

▶ Under a naive approach, this might require a
lot of components to characterize well enough
a complex structure
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▶ Some tentatives: reduce the number of required components including more
structure within each sub-population adaptively, also improving interpretation of
the clusters and components

▶ non-trivial outside Gaussian world, such as categorical data, mixtures of
multinomials, latent class models, and many others
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Algorithmic issues

▶ Data augmentation: a blessing or a curse?

▶ We love conditional conjugacy (Gibbs
Sampling). But at what price? Need to
introduce and update O(n) additional latent
variables even when the number of parameters
is much smaller (and sometimes we’re not
even interested in those augmented data)

▶ This problem affects mixtures as well as other
standard approaches (e.g., binary regression)

▶ What can we do: find a compromise between algebraic convenience and
scalability, eventually approximating our posterior

▶ For example: some algorithms update only subsets of latent variables (e.g.,
stochastic variational inference; Hoffman et al., 2013), or specify a more
tractable representation of the latent component to conduct approximate
inference (e.g., Daniele’s talk)
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Thanks to prof. Robert for the
wonderful talk..
and thanks for your attention!
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