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Colombo Lecture

SOURCE: http://mostra-colombo.stat.unipd.it/

— “An innovation in one field might induce unintended
consequences in another one” [Colombo, 2002]

— “In every scientific discipline, unresolved questions are
aligned alongside successes, but it is the awareness of the
limits of knowledge that constitutes the most effective
stimulus for intuition and scientific innovation” [Colombo, 1978]

This talk aims at answering some unresolved questions
on the skewed behavior often seen in practice in posterior
distributions, and will highlight the “unintended
consequences” that the advancements in the field of
skew–normals and related families [Azzalini and co–authors]
have in terms of innovations in Bayesian inference.

This is also the result of the lessons learned from my mentors Bruno Scarpa and
David Dunson [who met thanks to Bernardo Colombo!]. They taught me that
“Promoting and carrying out statistics research means that we must move with
study, breadth of ideas, dialogue, imagination and bravery” [Colombo 1990]
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Regression . . .

“Statisticians are engaged in an exhausting but exhilarating struggle with the
biggest challenge: how to translate information into knowledge” [S. Senn]

SOURCE: https://pixabay.com/it/

Regression, when possibile, is a great method to
learn how the distribution of a response y [or
functionals of it], changes with covariates.

However, going beyond regression for Gaussian
responses [either from a frequentist or Bayesian
perspective], introduces some issues.

SOURCE: https://xkcd.com/1281/
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Bayesian probit regression

Goal: Given [conditionally] independent binary data y1, . . . , yn from a probit
model (yi | β) ∼ Bern[Φ(xᵀi β)], i = 1, . . . , n with [in general] Gaussian prior
β ∼ Np(ξ,Ω) for β, provide inference on the posterior p(β | y).

Applying Bayes rule, the answer to the above question is

p(β | y) =
φp(β − ξ; Ω)

∏n
i=1 Φ(xᵀi β)yi [1− Φ(xᵀi β)]1−yi∫

Rp φp(β − ξ; Ω)
∏n

i=1 Φ(xᵀi β)yi [1− Φ(xᵀi β)]1−yi dβ
.

However p(β | y) does not seem to belong to some known class of distributions
and the normalizing constant apparently does not have an explicit form.

Solutions: This has motivated several methods
for Bayesian inference in probit models,
covering MCMC routines [Metropolis–Hastings,
Gibbs Sampling, Hamiltonian Monte Carlo] and
approximations of the posterior [Laplace,
Variational Bayes, Expectation Propagation].
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Unified skew–normal distribution
Arellano–Valle and Azzalini (2006), Scandinavian Journal of Statistics

Previous methods are still sub–optimal compared to cases in which the posterior
belongs to a known and tractable class. This could allow analytical posterior
inference for Bayesian probit regression. Indeed, the posterior is a sun.

Unified skew–normal random variable (SUN)
Generalizes the multivariate sn, β ∼ snp(ξ,Ω,α)
whose density 2φp(β − ξ; Ω)Φ[αᵀω−1(β − ξ)] is
obtained by modifying a Np(ξ,Ω), with the cdf of
the N(0, 1) evaluated at αᵀω−1(β − ξ), with ω the
diagonal matrix of standard deviations from Ω. It
unifies also other versions.

More precisely, if β ∼ sunp,q(ξ,Ω,∆,γ,Γ), with ξ ∈ Rp, ∆ ∈ Rp×q, γ ∈ Rq

and Ω∗—having block entries Ω∗[11] = Γ, Ω∗[22] = Ω̄ and Ω∗[21] = Ω∗ᵀ[12] = ∆—a
full–rank correlation matrix, then the density is

φp(β − ξ; Ω)
Φq(γ + ∆ᵀΩ̄−1ω−1(β − ξ); Γ − ∆ᵀΩ̄−1∆)

Φq(γ; Γ)
, (1)
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Unified skew–normal conjugacy in probit regression
Durante (2019), Biometrika

The posterior distribution p(β | y) for the coefficients of a probit regression
(yi | β) ∼ Bern[Φ(xᵀi β)], i = 1, . . . , n, coincides with a unified skew–normal
(sun) [Arellano–Valle and Azzalini, 2006], under Gaussian priors β ∼ Np(ξ,Ω).

Main Theorem. If (yi | β) ∼ Bern[Φ(xᵀi β)], i = 1, . . . , n and β ∼ Np(ξ,Ω):

(β | y) ∼ sunp,n(ξ,Ω, Ω̄ωDᵀs−1, s−1Dξ, s−1(DΩDᵀ + In)s−1),

for every D = diag(2y1 − 1, . . . , 2yn − 1)X ∈ Rn×p and any n × n positive
diagonal matrix of standard deviations s = [(DΩDᵀ + In)� In]1/2.

Sketch proof: Note p(β | y) ∝ φp(β − ξ; Ω)Φn(Dβ; In) and that the kernel of
sunp,n(ξ,Ω,∆,γ,Γ) is φp(β − ξ; Ω)Φn(γ + ∆ᵀΩ̄ −1ω−1(β − ξ); Γ − ∆ᵀΩ̄−1∆).

Remark: Whole sun class is conjugate to probit. Moreover, sun has (i)
closure properties [inference on (βj | y)], (ii) normalizing constant fairly easy to
compute [prediction and variable selection], (iii) simple additive representation
[iid sampling], (iv) explicit moment generating function [posterior moments].
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Additive representation

To highlight the role of the hyperparameters ξ and Ω, along with that of the
data y and X, let us consider a stochastic representation of the sun posterior.

If (β | y) ∼ sunp,n(ξ,Ω, Ω̄ωDᵀs−1, s−1Dξ, s−1(DΩDᵀ + In)s−1), then

(β | y) d= ξ + ω[V0 + Ω̄ωDᵀ(DΩDᵀ + In)−1sV1], (V0 ⊥ V1) (2)

with V0 ∼ Np(0, Ω̄− Ω̄ωDᵀ(DΩDᵀ + In)−1DωΩ̄), and V1 from an n–variate
Gaussian Nn(0, s−1(DΩDᵀ+ In)s−1) truncated below −s−1Dξ.

Comments: The above representation provides some useful insights.
ξ has a main role on location, but has also an effect in controlling
departures from normality both in terms of skewness and excess kurtosis.
Ω has a main effect on scale and dependence, but contributes also to the
shape in controlling the weight assigned to V1.
Data in D play more than a role in location, scale and departures from
normality. If D ≈ 0, V1 has a negligible importance compared to V0.
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Posterior inference

SUN is closed under marginalization, linear combinations and conditioning.
Adapting these results to the unified skew–normal in the previous theorem, the
marginal posteriors (βj | y), j = 1, . . . , p, still belong to the sun family, and

E(β | y) = ξ + Φn(s−1Dξ; s−1(DΩDᵀ + In)s−1)−1ΩDᵀs−1η,

where η is a simple function of the sun parameters.

It is also possible to obtain closed–form expressions for posterior predictive
probabilities pr(ynew = 1 | y) =

∫
Φ(xᵀnewβ)p(β | y)dβ and the marginal

likelihood
∫
p(y | Mk ,βJk

)p(βJk
| Mk )dβJk

of a given modelMk .

pr(ynew = 1 | y) = Φn+1(s−1newDnewξ; s−1new(DnewΩDᵀ
new + In+1)s−1new)

Φn(s−1Dξ; s−1(DΩDᵀ + In)s−1) .

The marginal likelihood is instead Φn(s−1k Dkξk ; s−1k (DkΩkDᵀ
k + In)s−1k ).

Problem: Inference requires sampling from n–variate truncated normals or
evaluation of cumulative distribution functions Φn(·) of n–variate Gaussians.
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Closed–form filter for dynamic probit models
Fasano, Rebaudo, Durante, Petrone (2021), Statistics and Computing

Goal: Closed–form recursive expressions for predictive p(βt | y1:t−1), filtering
p(βt | y1:t) and smoothing p(β1:n | y1:n) distributions in the dynamic model

(yt | βt) ∼ Bern[Φ(xᵀt βt)]→ p(yt | βt) = Φ[(2yt − 1)xᵀt βt ]
βt = Gtβt−1 + εt , εt ∼ Np(0,Wt), t = 1 . . . , n, β0 ∼ Np(a0,P0)

Hint: Note that p(β1 | y1) ∝ φp(β1 − G1a0;G1P0Gᵀ
1 + W1)Φ[(2y1 − 1)xᵀ1β1].

Main Theorem [closed–form filter for probit state–space models]
1 Filtering [t − 1] → Predictive [t]: If (βt−1 | y1:t−1) is a sunp,t−1 and
βt = Gtβt−1 + εt , with εt ∼ Np(0,Wt), then (βt | y1:t−1) is also a
sunp,t−1 with updated parameters [closure under linear combinations].

2 Predictive [t] → Filtering [t]: if (βt | y1:t−1) is sunp,t−1 and p(yt | βt) is
a probit likelihood, then p(βt | y1:t) ∝ p(βt | y1:t−1)Φ[(2yt − 1)xᵀt βt ] is
also sunp,t with updated parameters [sun–probit conjugacy; Durante, 2019].

Analog of the Kalman filter in the context of binary state–space models.
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βt = Gtβt−1 + εt , with εt ∼ Np(0,Wt), then (βt | y1:t−1) is also a
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2 Predictive [t] → Filtering [t]: if (βt | y1:t−1) is sunp,t−1 and p(yt | βt) is
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Analog of the Kalman filter in the context of binary state–space models.
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sun conjugacy in multinomial probit models
Fasano and Durante (2022), Journal of Machine Learning Research

Extension to L categories [based on Gaussian latent utilities ui1, . . . , uiL].
[Hausman and Wise, 1978]. pr(yi = l | β) = pr(uil > uik , ∀k 6= l) with
uil = xᵀilβ + εil , εi ∼ NL(0,Σ) for each l = 1, . . . , L and i = 1, . . . , n.
[Stern, 1992]. pr(yi = l | β) = pr(uil > uik , ∀k 6= l) with uil = xᵀi βl + εil ,
εi ∼ NL(0,Σ) for each l = 1, . . . , L and i = 1, . . . , n.
[Tutz, 1991]. Based on a nested decision process relying on sequential
binary decisions with probability pr(yi = l | yi > l − 1,β) = Φ(xᵀi βl ).

Goal: Closed–form results for p(β | y), when β has Gaussian or sun prior.

Hint: The above models admit likelihood of the form p(y | β) = Φm(X̄β; Λ),
where X̄ and Λ are suitable design and covariance matrices, respectively.

Main Theorem. If p(y | β) = Φm(X̄β; Λ) and β has sun prior (Gaussian is a
special case), then (β | y) ∼ sunq,m′(ξpost,Ωpost,∆post,γpost,Γpost).

Leverage the sun properties also for Bayesian inference in multinomial probits.
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Useful augmented–data representation
Albert and Chib (1993)

Problem. Closed–form inference under sun posteriors requires to deal with
multivariate truncated normals and cdfs of multivariate Gaussians whose
dimension grows with the sample size n → try to approximate the posterior.

Bayesian probit regression model can also be expressed as

yi = 1(zi > 0), with (zi | β) ∼ N(xᵀi β, 1), i = 1, . . . , n, and β ∼ Np(0, ν2p Ip).

Thus, we have a dichotomized Gaussian linear regression on latent data zi .

This has been widely used in the development of mcmc and vb methods.

(β | z, y) ∼ Np(VXᵀz,V), V = (ν−2p Ip + XᵀX)−1,

(zi | β, z−i , y) ∼
{
TN[xᵀi β, 1, (0,+∞)], if yi = 1,
TN[xᵀi β, 1, (−∞, 0)], if yi = 0,

for i = 1, . . . , n,

These full–conditionals allow implementation of Gibbs samplers [Albert and Chib,
1993] and mean–field vb with global and local variables [Consonni and Marin, 2007].
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Mean–field variational Bayes for probit models

Goal: Find a tractable approximation for the joint posterior density p(β, z | y),
within the mf class of densities Qmf = {qmf(β, z) : qmf(β, z) = qmf(β)qmf(z)}

The optimal vb solution q∗mf(β)q∗mf(z) within this family minimizes

kl[qmf(β, z) || p(β, z | y)] = Eqmf(β,z)[log qmf(β, z)]− Eqmf(β,z)[log p(β, z | y)].

In practice, we maximize elbo[qmf(β, z)] = −kl[qmf(β, z)||p(β, z | y)] + c via

q(t)
mf(β) ∝ exp{Eq(t−1)

mf (z) log[p(β | z, y)]}, q(t)
mf(z) ∝ exp{Eq(t)

mf (β) log[p(z | β, y)]},

that approximates p(β, z | y) via q∗mf(β)
∏n

i=1 q
∗
mf(zi ), where q∗mf(β) is a

Gaussian, while q∗mf(zi ) are univariate truncated normals.

However, Fasano, Durante, Zanella (2022+) show that

Theorem: Under simple assumptions, lim infp→∞ kl[q∗mf(β) || p(β | y)] > 0
almost surely (a.s.). Moreover, ν−1p ||Eq∗mf(β)(β)|| → 0 (a.s.) as p →∞, where
|| · || is the Euclidean norm. On the contrary, ν−1p ||Ep(β|y)(β)|| → const ·

√
n > 0

(a.s.) as p →∞, where const is a strictly positive constant.
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pfm–vb for probit models
Fasano, Durante, Zanella (2022+), Biometrika

Solution: Enlarge the class of approximating densities in a way that still
allows simple optimization and inference. In particular, we consider the partially
factorized family Qpfm = {qpfm(β, z) : qpfm(β, z) = qpfm(β | z)

∏n
i=1 qpfm(zi )}.

Motivation for the use of Qpfm: q∗mf(β, z) = q∗mf(β)
∏n

i=1 q
∗
mf(zi ) belongs to

Qpfm, and p(β, z | y) = p(β | z)p(z | y) with p(β | z) = φp(β − VXᵀz;V) and
p(z | y) ∝ φn(z; In + ν2pXXᵀ)

∏n
i=1 1[(2yi − 1)zi > 0] [Holmes and Held, 2006].

Proposition. Let q∗pfm(β, z) and q∗mf(β, z) be the optimal approximations for
p(β, z | y), under pfm-vb and mf-vb, respectively. Then

kl[q∗pfm(β, z) || p(β, z | y)] ≤ kl[q∗mf(β, z) || p(β, z | y)].

Main Theorem. The optimal joint approximating density q∗pfm(β, z) can be
derived via a tractable cavi relying on simple closed–form expressions and
q∗pfm(β) =

∫
Rn q∗pfm(β | z)

∏n
i=1 q

∗
pfm(zi )dz = Eq∗pfm(z)[q∗pfm(β | z)] of direct

interest is the density of a sun, which crucially relies on a diagonal Γ = In.
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Main Theorem. The optimal joint approximating density q∗pfm(β, z) can be
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∫
Rn q∗pfm(β | z)
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pfm(zi )dz = Eq∗pfm(z)[q∗pfm(β | z)] of direct

interest is the density of a sun, which crucially relies on a diagonal Γ = In.



pfm–vb for probit models
Fasano, Durante, Zanella (2022+), Biometrika

Solution: Enlarge the class of approximating densities in a way that still
allows simple optimization and inference. In particular, we consider the partially
factorized family Qpfm = {qpfm(β, z) : qpfm(β, z) = qpfm(β | z)

∏n
i=1 qpfm(zi )}.

Motivation for the use of Qpfm: q∗mf(β, z) = q∗mf(β)
∏n

i=1 q
∗
mf(zi ) belongs to

Qpfm, and p(β, z | y) = p(β | z)p(z | y) with p(β | z) = φp(β − VXᵀz;V) and
p(z | y) ∝ φn(z; In + ν2pXXᵀ)

∏n
i=1 1[(2yi − 1)zi > 0] [Holmes and Held, 2006].

Proposition. Let q∗pfm(β, z) and q∗mf(β, z) be the optimal approximations for
p(β, z | y), under pfm-vb and mf-vb, respectively. Then

kl[q∗pfm(β, z) || p(β, z | y)] ≤ kl[q∗mf(β, z) || p(β, z | y)].

Main Theorem. The optimal joint approximating density q∗pfm(β, z) can be
derived via a tractable cavi relying on simple closed–form expressions and
q∗pfm(β) =

∫
Rn q∗pfm(β | z)

∏n
i=1 q

∗
pfm(zi )dz = Eq∗pfm(z)[q∗pfm(β | z)] of direct

interest is the density of a sun, which crucially relies on a diagonal Γ = In.



pfm–vb solutions
Fasano, Durante, Zanella (2022+), Biometrika

To be useful in practice, q∗pfm(β, z) should be simple to derive and the density
q∗pfm(β) =

∫
Rn q∗pfm(β|z)

∏n
i=1 q

∗
pfm(zi )dz = Eq∗pfm(z)[q∗pfm(β | z)] of direct

interest should be available in tractable form.

Theorem: Under the augmented probit model, the kl divergence between
qpfm(β, z) ∈ Qpfm and p(β, z | y) is minimized at q∗pfm(β | z)

∏n
i=1 q

∗
pfm(zi ) with

q∗pfm(β | z)= p(β | z) = φp(β − VXᵀz;V), V = (ν−2p Ip + XᵀX)−1,

q∗pfm(zi ) = φ(zi − µ∗i ;σ∗2i )
Φ[(2yi − 1)µ∗i /σ∗i ]1[(2yi − 1)zi > 0], σ∗2i = (1− xᵀi Vxi )−1,

where µ∗ = (µ∗1 , . . . , µ∗n )ᵀ solves µ∗i − σ∗2i xᵀi VX
ᵀ
−i z̄
∗
−i = 0, i = 1, . . . , n, with

X−i the design matrix without the ith row, while z̄∗−i is the (n − 1)× 1 vector
obtained by removing z̄∗i = µ∗i + (2yi − 1)σ∗i φ(µ∗i /σ∗i )Φ[(2yi − 1)µ∗i /σ∗i ]−1,
i = 1, . . . , n, from the vector z̄∗ = (z̄∗1 , . . . , z̄∗n )ᵀ.

The optimal parameters of the above densities can be obtained via a simple
cavi algorithm [at the same cost of mf–vb].
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Approximation quality and computational efficiency
Fasano, Durante, Zanella (2022+), Biometrika

The factorized form for qpfm(z) leads to a sun approximate density for β, with
Γ = In. This allows tractable inference at an O(pn ·min{p, n}) cost.

Theorem Under simple assumptions, kl[q∗pfm(β) || p(β | y)] p→ 0 as p →∞
[quality of the approximation]

Corollary. Let pr(ynew = 1 | y) =
∫

Φ(xᵀnewβ)p(β|y)dβ be the exact posterior
predictive probability for a new unit with predictors xnew ∈ Rp. Then, under
simple assumptions, supxnew∈Rp |prpfm(ynew = 1 | y)− pr(ynew = 1 | y)| p→ 0 as
p →∞. Instead, lim infp→∞ supxnew∈Rp |prmf(ynew = 1|y)− pr(ynew = 1|y)| > 0
almost surely as p →∞ [quality of classification]

Theorem. Let q(t)
pfm(β) =

∫
Rn q

(t)
pfm(β | z)

∏n
i=1 q

(t)
pfm(zi )dz be the approximate

density for β produced at iteration t by our cavi. Then, under simple
assumptions, kl[q(1)

pfm(β) || p(β | y)] p→ 0 as p →∞ [computational efficiency]
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Simulation

We evaluate accuracy in the approximation for three key functionals of the
posterior distribution for β, by comparing mf–vb and pfm–vb approximations
for these quantities with the stan estimates at varying (p, n) settings.

Simulation scenario: data y are simulated from probit regression with inputs
xij , [i = 1, . . . , n, j = 1, . . . , p] sampled from independent standard normals and
coefficients βj [j = 1, . . . , p] simulated from uniforms in the range [−5, 5].

Empirical evidence is in line with theory and shows that our asymptotic results
are visible also in finite-dimensional p > n settings.
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Alzheimers’ application

Large p, moderate n study on presence–absence of Alzheimer as a function of
demographic data, genotype and assay results. In this application n = 300 and
p = 9036 [we include interactions]. We consider β ∼ N9036(0, 25 · I9036).

Computational performance. Runtimes required for posterior inference
stan ep sun mf-vb pfm-vb

Time [minutes] > 360.00 > 360.00 92.27 0.04 0.04



Alzheimers’ application

Large p, moderate n study on presence–absence of Alzheimer as a function of
demographic data, genotype and assay results. In this application n = 300 and
p = 9036 [we include interactions]. We consider β ∼ N9036(0, 25 · I9036).

Computational performance. Runtimes required for posterior inference
stan ep sun mf-vb pfm-vb

Time [minutes] > 360.00 > 360.00 92.27 0.04 0.04



Alzheimers’ application

Large p, moderate n study on presence–absence of Alzheimer as a function of
demographic data, genotype and assay results. In this application n = 300 and
p = 9036 [we include interactions]. We consider β ∼ N9036(0, 25 · I9036).

Computational performance. Runtimes required for posterior inference
stan ep sun mf-vb pfm-vb

Time [minutes] > 360.00 > 360.00 92.27 0.04 0.04



Prediction in probit Gaussian processes
Cao, Durante, Genton (2022+), Journal of Computational and Graphical Statistics

Main result: Derive closed–form expressions for the predictive probabilities in
probit Gaussian processes that rely on ratios of cdfs of multivariate Gaussians
and develop new scalable solutions based on tile–low–rank Monte Carlo
methods and separation–of–variables estimator [Genz, 1992] for computing
ratios of Gaussian cdfs with theoretical accuracy guarantees



Further extensions
Anceschi, Fasano, Durante, Zanella (202–), https://arxiv.org/abs/2206.08118

The models considered so far are special examples of a much broader class of
formulations whose likelihood factorizes as
p(y | β) = p(y1 | β)p(y0 | β) ∝ φn1(y1 − X1β; Σ1)Φn0(y0 + X0β; Σ0). (3)

Examples: probit, multivariate probit, multinomial probit, tobit, and others.

Note: Recalling the results in the previous slides, the above likelihood is
actually the kernel of a sun density → conjugacy with sun priors.

Main Theorem. If β ∼ sunp,q(ξ,Ω,∆,γ,Γ) — meaning that the prior density
of β is p(β) ∝ φp(β − ξ; Ω)Φq(γ + ∆ᵀΩ̄−1ω−1(β − ξ); Γ−∆ᵀΩ̄−1∆) — and
p(y | β) has likelihood (3), then

(β | y) ∼ sunp,q+n0(ξpost,Ωpost,∆post,γpost,Γpost),
where ξpost,Ωpost,∆post,γpost, and Γpost are simple analytical functions of
ξ,Ω,∆,γ,Γ and y1,X1,Σ1, y0,X0,Σ0.

Consequence: All computational and inference methods previously developed
can be applied to a broad class of routinely–implemented models.
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Bernstein–Von Mises theorem

Bernstein–Von Mises theorem [in short]: under regularity conditions, the
total variation distance between the posterior distribution and a
suitably–defined Gaussian distribution converges to 0 in probability.
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However: This limiting behavior may require a large sample size before
becoming visible. In fact, the posterior distribution is often skewed in practice.
Conjecture: Adopting as limiting law a skewed generalization of the Gaussian
distribution, we might obtain substantially more accurate/stronger results.
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Skewed Bernstein–Von Mises theorem
Pozza, Durante, Szabo (2022+), soon online

Let {yi}n
i=1 be a sequence of independent random variables with probability

measure P(n)
θ0
∈ {P(n)

θ , θ ∈ Θ ⊆ Rp}. Moreover, let `(θ) be the log–likelihood
and `(1) = [`(1)

r ], `(2) = [`(2)
rs ], `(3) = [`(3)

rst ] its first three derivatives at θ0.

Theorem: Under regularity conditions on the log–likelihood ratio and its
derivatives, if the map θ → P(n)

θ is one–to–one, θ0 is an inner point of Θ and
the prior measure P(θ) is absolutely continuous with bounded and positive
density in a neighborhood of θ0, then

|| P(· | y(n))− Pse(·) ||tv= Op({log n}p/2+3/n)

where Pse(A) =
∫
A
pse(θ̄)d θ̄ for A ⊂ Rp, θ̄ =

√
n(θ − θ0) and pse(θ̄) is the

density of a suitably–defined skew–symmetric distribution [Azzalini & Regoli, 2012].
Specifically, pse(θ̄) = 2φp(θ̄; ξn,Ωn)Φ{αn(θ̄)}, where αn(·) is an odd function.

Remark: In the above theorem, the quantities ξn,Ωn and αn(·) are simple
analytical functions of `(1) = [`(1)

r ], `(2) = [`(2)
rs ], `(3) = [`(3)

rst ] and the prior.

Advertisement: For more details check the poster of Francesco Pozza.
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r ], `(2) = [`(2)
rs ], `(3) = [`(3)

rst ] its first three derivatives at θ0.

Theorem: Under regularity conditions on the log–likelihood ratio and its
derivatives, if the map θ → P(n)

θ is one–to–one, θ0 is an inner point of Θ and
the prior measure P(θ) is absolutely continuous with bounded and positive
density in a neighborhood of θ0, then

|| P(· | y(n))− Pse(·) ||tv= Op({log n}p/2+3/n)

where Pse(A) =
∫
A
pse(θ̄)d θ̄ for A ⊂ Rp, θ̄ =

√
n(θ − θ0) and pse(θ̄) is the

density of a suitably–defined skew–symmetric distribution [Azzalini & Regoli, 2012].
Specifically, pse(θ̄) = 2φp(θ̄; ξn,Ωn)Φ{αn(θ̄)}, where αn(·) is an odd function.

Remark: In the above theorem, the quantities ξn,Ωn and αn(·) are simple
analytical functions of `(1) = [`(1)

r ], `(2) = [`(2)
rs ], `(3) = [`(3)

rst ] and the prior.
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Skew–modal approximation
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0.0

0.2

−6 −2 2 6

n(α − α0)

−1

0

1

2

−2 0 2

n(α − α0)

n
(β

−
β

0
)

−1

0

1

2

−2 0 2

n(α − α0)

n
(β

−
β

0
)

0.0

0.2

0.4

−3 −1 1 3 5

n(β − β0)
BVM Skew BVM Posterior

Simulation with n = 15, yi
iid∼ Ga(α, β),

α ∼ Ga(2) and β ∼ Ga(2).

Comment. We improve the approximation
accuracy relative to classical BvM.
However, both approximations require θ0,
which is not available in practice.
Solution. Modal approximation based on a
skew–symmetric density rather than a
Gaussian one [recall Laplace approximation]

Skew–modal approximation [provably
more accurate than Laplace]: Let ˜̀
denote the log–posterior at its map θ̃,
then we approximate p(θ | y(n)) via
2φp(θ; θ̃, Ω̃)Φ{α̃(θ)} where Ω̃ and α̃(·)
are simple functions of ˜̀(2), ˜̀(3) and θ̃.
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Conclusion

Main message: Skew–normals and related families [Azzalini & co–authors]
play a key role in Bayesian inference, which has been partially overlooked to
date [Exception: Liseo & co–authors]. The advancements presented open new
avenues for improved posterior inference via novel closed–form expressions, new
Monte Carlo methods, and more accurate and scalable approximations.

The above results also motivate further extensions.
Further improve the skew–modal approximation in terms of accuracy
Explore conjugacy in broader classes [of models and skewed prior]
Explore more complex models building on such representations; i.e. bart

Thank you for the attention!
https://danieledurante.github.io/web/

https://github.com/danieledurante

I would like to acknowledge the support from miur–prin 2017 project
SELECT [20177BRJXS] in the preparation of some of these works.
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