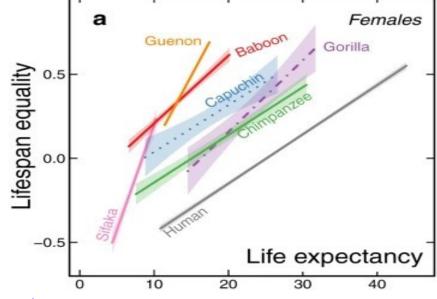

TOWARDS A TRANSDISCIPLINARY FRAMEWORK TO ANALYZE BIRTH AND DEATH PATTERNS. DISCUSSION

Cinzia Mortarino Department of Statistical Sciences, University of Padova


- Understanding the nature and extent of biological
 constraints on the rate of ageing [..] is critical [...] to ex tend human lifespans... (Colchero et al., 2021)
- Under what conditions could the rate of ageing change?

Colchero, F., et al. (2021). The long lives of primates and the 'invariant rate of ageing' hypothesis. Nature Communications, 12, 3666.

Pace & Shape as two different components of mortality separate estimates ignore interactions?

- interactions among species (e.g., human effect on environment)
- extemporaneous events
 - (e.g., pandemic, war, extreme climatic events)
- limited resources

Colchero, F., et al. (2021). The long lives of primates and the 'invariant rate of ageing' hypothesis. Nature Communications, 12, 3666.

Alternative [unfeasible?] approach

- 3 species extended Lotka Volterra models; among others:
- ➡ Chauvet et al. (2002), Mathematics Magazine
- Hsu S.B. et. al.(2015) Journal of Mathematical Analysis and Applications

Chauvet, E., Paullet, J. E., Previte, J.P. and Walls, Z. (2002). A Lotka-Volterra Three-species Food Chain, *Mathematics Magazine*, 75(4), pp. 243-255. Hsu, S.B., Ruan S., Yan T.C. (2015). Analysis of three species Lotka–Volterra food web models with omnivory *Journal of Mathematical Analysis and Applications*, 426(2), pp. 659-687.

An example from a statistical point of view (Furlan et al., 2021)

Yearly energy consumptions (provided by BP, in Mtoe) for Sweden

CGON vs. Renewables CGO vs N vs. Renewables CGO 40 35 Renewables Nuclear fitted CGO 30 fitted Renew fitted Nuclear Consumption (Mtoe) 10 10 10 Renewable 5 0 1970 1980 1990 2000 2010 2020 1960 1970 1980 1990 2000 2010 1960 2020 Years Years

Furlan, C., Mortarino, C. and Zahangir, M. S. (2021). Interaction among threesubstitute products: an extended innovation diffusion model. *Statistical Methods* & *Applications*, 30, pp. 269–293.

3CM (3 Competitor Model)

$$\begin{aligned} z_1'(t) &= m \left\{ \left[p_{1\alpha} + (q_{1\alpha} + \delta_{\alpha}) \frac{z_1(t)}{m} + q_{1\alpha} \frac{z_2(t)}{m} \right] (1 - I_{t>c_2}) + \right. \\ &+ \left[p_{1\beta} + (q_{1\beta} + \delta_{\beta}) \frac{z_1(t)}{m} + q_{1\beta} \frac{z_2(t)}{m} + q_{1\beta} \frac{z_3(t)}{m} \right] I_{t>c_2} \right\} R(t) \ x_1(t) \\ z_2'(t) &= m \left\{ \left[p_{2\alpha} + (q_{2\alpha} - \delta_{\alpha}) \frac{z_1(t)}{m} + q_{2\alpha} \frac{z_2(t)}{m} \right] (1 - I_{t>c_2}) + \right. \\ &+ \left[p_{2\beta} + q_{2\beta} \frac{z_1(t)}{m} + (q_{2\beta} + \delta_{\beta}) \frac{z_2(t)}{m} + q_{2\beta} \frac{z_3(t)}{m} \right] I_{t>c_2} \right\} R(t) x_2(t) \\ z_3'(t) &= m \left\{ \left[p_3 + (q_3 - \delta_{\beta}) \frac{z_1(t)}{m} + (q_3 - \delta_{\beta}) \frac{z_2(t)}{m} + q_3 \frac{z_3(t)}{m} \right] I_{t>c_2} \right\} R(t) x_3(t) \\ m &= m_{\alpha} (1 - I_{t>c_2}) + m_{\beta} I_{t>c_2} \\ z(t) &= z_1(t) + z_2(t) + z_3(t) I_{t>c_2} \end{aligned}$$