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Mixture models

Convex combination of densities

x ∼ fj with probability pj ,

for j = 1, 2, . . . , k , with overall density

p1f1(x) + · · ·+ pk fk(x) .

Usual case: parameterised components

k∑
i=1

pi f (x |θi ) with
n∑

i=1

pi = 1

where weights pi ’s are distinguished from
component parameters θi



Motivations

I Dataset made of several latent/missing/unobserved
groups/strata/subpopulations. Mixture structure due to the
missing origin/allocation of each observation to a specific
subpopulation/stratum. Inference on either the allocations
(clustering) or on the parameters (θi , pi ) or on the number of
components

I Semiparametric perspective where mixtures are functional
basis approximations of unknown distributions

I Nonparametric perspective where number of components
infinite (e.g., Dirichlet process mixtures)
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Likelihood

“I have decided that mixtures, like tequila, are inherently
evil and should be avoided at all costs.” L. Wasserman

For a sample of independent random variables (x1, · · · , xn),
likelihood

n∏
i=1

{p1f1(xi ) + · · ·+ pk fk(xi )} .

computable [pointwise] in O(kn) time.
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Normal mean mixture

Normal mixture

pN(µ1, 1) + (1 − p)N(µ2, 1)

with only means µi unknown

Identifiability

Parameters µ1 and µ2 identifiable: µ1
cannot be confused with µ2 when p is
different from 0.5.

Presence of atavistic mode, better

understood by letting p go to 0.5
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Bayesian inference on mixtures

For any prior π (θ,p), posterior distribution of (θ,p) available up
to a multiplicative constant

π(θ,p|x) ∝

 n∏
i=1

k∑
j=1

pj f (xi |θj)

 π (θ,p)
at a cost of order O(kn)

Challenge

Despite this, derivation of posterior characteristics like posterior
expectations only possible in an exponential time of order O(kn)!
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Challenges from likelihood

1. Number of modes of the likelihood of order O(k!):
© Maximization / exploration of posterior surface hard

2. Under exchangeable / permutation invariant priors on (θ,p)
all posterior marginals are identical:
© All posterior expectations of θi equal

3. Estimating the density much simpler

[Marin & X, 2007]
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Missing variable representation

Demarginalise: Associate to each xi a missing/latent/auxiliary
variable zi that indicates its component:

zi |p ∼ Mk(p1, . . . , pk)

and
xi |zi ,θ ∼ f (·|θzi )

Completed likelihood

`C(θ,p|x, z) =

n∏
i=1

pzi f (xi |θzi )

and

π(θ,p|x, z) ∝

[
n∏

i=1

pzi f (xi |θzi )

]
π (θ,p)

where z = (z1, . . . , zn)
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Gibbs sampling for mixture models

Take advantage of the missing data structure:

Algorithm

I Initialization: choose p(0) and θ(0) arbitrarily
I Step t. For t = 1, . . .

1. Generate z
(t)
i (i = 1, . . . , n) from (j = 1, . . . , k)

P
(
z
(t)
i = j |p

(t−1)
j , θ

(t−1)
j , xi

)
∝ p

(t−1)
j f

(
xi |θ

(t−1)
j

)
2. Generate p(t) from π(p|z(t)),

3. Generate θ(t) from π(θ|z(t), x).

[Brooks & Gelman, 1990; Diebolt & X, 1990, 1994; Escobar & West, 1991]



Normal mean mixture (cont’d)

−1 0 1 2 3 4

−
1

0
1

2
3

4

µ1

µ
2

(a) initialised at random
[X & Casella, 2009]
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weakly informative priors

“Los espejos y la cópula son abominables, porque multiplican el
número de los hombres.”
− Jorge Luis Borges, Ficciones

I possible symmetric empirical Bayes priors

p ∼ D(γ, . . . ,γ), θi ∼ N(µ̂, ω̂σ2i ), σ−2
i ∼ Ga(ν, ε̂ν)

which can be replaced with hierarchical priors
[Diebolt & X, 1990; Richardson & Green, 1997]

I independent improper priors on θj ’s prohibited, thus standard
“flat” and Jeffreys priors impossible to use (except with the
exclude-empty-component trick)

[Diebolt & X, 1990; Wasserman, 1999]



weakly informative priors

I reparameterization to compact set for use of uniform priors

µi −→ eµi

1 + eµi
, σi −→ σi

1 + σi

[Chopin, 2000]

I dependent weakly informative priors

p ∼ D(k , . . . , 1), θi ∼ N(θi−1, ζσ
2
i−1), σi ∼ U([0,σi−1])

[Mengersen & X, 1996; X & Titterington, 1998]

I reference priors

p ∼ D(1, . . . , 1), θi ∼ N(µ0, (σ
2
i + τ

2
0)/2), σ2i ∼ C+(0, τ20)

[Moreno & Liseo, 1999]



Ban on improper priors

Difficult to use improper priors in the setting of mixtures because
independent improper priors,

π (θ) =

k∏
i=1

πi (θi ) , with

∫
πi (θi )dθi =∞

end up, for all n’s, with the property∫
π(θ,p|x)dθdp =∞

Reason

There are (k − 1)n terms among the kn terms in the expansion
that allocate no observation at all to the i-th component
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Estimating k

When k is unknown, setting a prior on k leads to a mixture of
finite mixtures (MFM)

K ∼ pK pmf over N∗

Consistent estimation when pK puts mass on every integer
[Nobile, 1994; Miller & Harrison, 2018]

Implementation by

I reversible jump
[Richardson & Green, 1997; Frühwirth-Schnatter, 2011]

I saturation by superfluous components
[Rousseau & Mengersen, 2011]

I Bayesian model comparison
[Berkhof, Mechelen, & Gelman, 2003; Lee & X, 2018]

I cluster estimation
[Malsiner-Walli, Frühwirth-Schnatter & Grün, 2016]
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Clusters versus components

“In the mixture of finite mixtures, it is perhaps intuitively
clear that, under the prior at least, the number of clusters
behaves very similarly to the number of components K
when n is large. It turns out that under the posterior they
also behave very similarly for large n.” Miller & Harrison
(2018)

However Miller & Harrison (2013, 2014) showed that the Dirichlet
process mixture posterior on the number of clusters is typically not
consistent for the number of components
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Dirichlet process mixture (DPM)

Extension to the k =∞ (non-parametric) case

xi |zi ,θ
i .i .d
∼ f (xi |θxi ), i = 1, . . . , n (1)

P(Zi = k) = πk , k = 1, 2, . . .

π1,π2, . . . ∼ GEM(M) M ∼ π(M)

θ1, θ2, . . .
i .i .d
∼ G0

with GEM (Griffith-Engen-McCloskey) defined by the
stick-breaking representation

πk = vk

k−1∏
i=1

(1 − vi ) vi ∼ Beta(1,M)

[Sethuraman, 1994]



Dirichlet process mixture (DPM)

Resulting in an infinite mixture

x ∼

n∏
i=1

∞∑
i=1

πi f (xi |θi )

with (prior) cluster allocation

π(z|M) =
Γ(M)

Γ(M + n)
MK+

K+∏
j=1

Γ(nj)

and conditional likelihood

p(x|z,M) =

K+∏
j=1

∫ ∏
i :zi=j

f (xi |θj)dG0(θj)

available in closed form when G0 conjugate
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Label switching paradox

I We should observe the exchangeability of the components
[label switching] to conclude about convergence of the Gibbs
sampler.

[Holmes, Jasra & Stephens, 2005]

I If we observe it, then marginals are useless for estimating the
parameters.

[Frühwirth-Schnatter, 2001, 2004; Green, 2019]

I If we do not, then we are uncertain about the convergence!!!
[Celeux, Hurn & X, 2000]
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Constraints

Usual reply to lack of identifiability: impose constraints like

µ1 6 . . . 6 µk

in the prior

Mostly incompatible with the topology of the posterior surface:
posterior expectations then depend on the choice of the
constraints.

Computational “detail”

The constraint need not be imposed during the simulation but can
instead be imposed after simulation, reordering MCMC output
according to constraints. [This avoids possible negative effects on
convergence]
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Relabeling towards the mode

Selection of one of the k! modal regions of the posterior,
post-simulation, by computing the approximate MAP

(θ,p)(i
∗) with i∗ = arg max

i=1,...,M
π
{
(θ,p)(i)|x

}

Pivotal Reordering

At iteration i ∈ {1, . . . ,M},

1. Compute the optimal permutation

τi = arg min
τ∈Sk

d
(
τ
{
(θ(i),p(i)), (θ(i∗),p(i∗))

})
where d(·, ·) distance in the parameter space.

2. Set (θ(i),p(i)) = τi ((θ
(i),p(i))).

[Celeux, 1998; Stephens, 2000; Celeux, Hurn & X, 2000]
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Loss functions for mixture estimation

Global loss function that considers
distance between predictives

L(ξ, ξ̂) =

∫
X
fξ(x) log

{
fξ(x)/fξ̂(x)

}
dx

eliminates the labelling effect

Similar solution for estimating clusters
through allocation variables

L(z , ẑ) =
∑
i<j

(
I[zi=zj ](1 − I[ẑi=ẑj ]) + I[ẑi=ẑj ](1 − I[zi=zj ])

)
.

[Celeux, Hurn & X, 2000]
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Bayesian model choice

Comparison of models Mi by Bayesian means:

probabilise the entire model/parameter space

I allocate probabilities pi to all models Mi

I define priors πi (θi ) for each parameter space Θi

I compute

π(Mi |x) =

pi

∫
Θi

fi (x |θi )πi (θi )dθi∑
j

pj

∫
Θj

fj(x |θj)πj(θj)dθj

Computational difficulty on its own
[Chen, Shao & Ibrahim, 2000; Marin & X, 2007]



Bayesian model choice

Comparison of models Mi by Bayesian means:

Relies on a central notion: the evidence

Zk =

∫
Θk

πk(θk)Lk(θk) dθk ,

aka the marginal likelihood.
Computational difficulty on its own

[Chen, Shao & Ibrahim, 2000; Marin & X, 2007]



Validation in mixture setting

“In principle, the Bayes factor for the MFM versus the
DPM could be used as an empirical criterion for choos-
ing between the two models, and in fact, it is quite easy
to compute an approximation to the Bayes factor using
importance sampling” Miller & Harrison (2018)

Bayes Factor consistent for selecting number of components
[Nobile, 1994; Ishwaran et al., 2001; Casella & Moreno, 2009; Chib and Kuffner, 2016]

Bayes Factor consistent for testing parametric versus
nonparametric alternatives

[Verdinelli & Wasserman, 1997; Dass & Lee, 2004; McVinish et al., 2009]



Consistent evidence for location DPM

Consistency of Bayes factor comparing finite mixtures against
(location) Dirichlet Process Mixture

0 250 500 750 1000 1250 1500 1750 2000
n

4

3

2

1

0

1

2

lo
g(

BF
)

0 200 400 600 800 1000
n

0

1

2

3

4

5

6

7

8

lo
g(

BF
)



Consistent evidence for location DPM

Under generic assumptions, when x1, · · · , xn iid fP0 with

P0 =

k0∑
j=1

p0j δθ0j

and Dirichlet DP(M,G0) prior on P, there exists t > 0 such that
for all ε > 0

Pf0

(
mDP(x) > n−(k0−1+dk0+t)/2

)
= o(1)

Moreover there exists q > 0 such that

ΠDP

(
‖f0 − fp‖1 6

(log n)q√
n

∣∣∣∣ x) = 1 + oPf0
(1).



Chib’s representation

Direct application of Bayes’ theorem: given x ∼ fk(x|θk) and
θk ∼ πk(θk),

Zk = mk(x) =
fk(x|θk)πk(θk)

πk(θk |x)

Replace with an approximation to the posterior

Ẑk = m̂k(x) =
fk(x|θ

∗
k)πk(θ

∗
k)

π̂k(θ
∗
k |x)

.

[Chib, 1995]
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Case of latent variables

For missing variable z as in mixture models, natural Rao-Blackwell
estimate

π̂k(θ
∗
k |x) =

1

T

T∑
t=1

πk(θ
∗
k |x, z

(t)
k ) ,

where the z
(t)
k ’s are Gibbs sampled latent variables

[Diebolt & Robert, 1990; Chib, 1995]



Compensation for label switching

For mixture models, z
(t)
k usually fails to visit all configurations in a

balanced way, despite the symmetry predicted by the theory
Consequences on numerical approximation, biased by an order k!
Recover the theoretical symmetry by using

π̃k(θ
∗
k |x) =

1

T k!

∑
σ∈Sk

T∑
t=1

πk(σ(θ
∗
k)|x, z

(t)
k ) .

for all σ’s in Sk , set of all permutations of {1, . . . , k}
[Berkhof, Mechelen, & Gelman, 2003]
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Galaxy dataset (k)

Using Chib’s estimate, with θ∗k as MAP estimator,

log(Ẑk(x)) = −105.1396

for k = 3, while introducing permutations leads to

log(Ẑk(x)) = −103.3479

Note that
−105.1396 + log(3!) = −103.3479

k 2 3 4 5 6 7 8

Zk(x) -115.68 -103.35 -102.66 -101.93 -102.88 -105.48 -108.44

Estimations of the marginal likelihoods by the symmetrised Chib’s

approximation (based on 105 Gibbs iterations and, for k > 5, 100 permutations

selected at random in Sk).

[Lee et al., 2008]
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More efficient sampling

Difficulty with the explosive numbers of terms in

π̃k(θ
∗
k |x) =

1

T k!

∑
σ∈Sk

T∑
t=1

πk(σ(θ
∗
k)|x, z

(t)
k ) .

when most terms are equal to zero...
Iterative bridge sampling:

Ê(t)(k) = Ê(t−1)(k)M−1
1

M1∑
l=1

π̂(θ̃l |x)

M1q(θ̃l) +M2π̂(θ̃l |x)

/

M−1
2

M2∑
m=1

q(θ̂m)

M1q(θ̂m) +M2π̂(θ̂m|x)

[Frühwirth-Schnatter, 2004]
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where

q(θ) =
1

J1

J1∑
j=1

p(θ|z(j))
k∏

i=1

p(ξi |ξ
(j)
i<j , ξ

(j−1)
i>j , z(j), x)
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or where

q(θ) =
1

k!

∑
σ∈S(k)

p(θ|σ(zo))
k∏

i=1

p(ξi |σ(ξ
o
i<j),σ(ξ

o
i>j),σ(z

o), x)



Further efficiency

After de-switching (un-switching?), representation of importance
function as

q(θ) =
1

Jk!

J∑
j=1

∑
σ∈Sk

π(θ|σ(ϕ(j)), x) =
1

k!

∑
σ∈Sk

hσ(θ)

where hσ associated with particular mode of q
Assuming generations

(θ(1), . . . ,θ(T)) ∼ hσc (θ)

how many of the hσ(θ
(t)) are non-zero?



Sparsity for the sum

Contribution of each term relative to q(θ)

ησ(θ) =
hσ(θ)

k!q(θ)
=

hσi (θ)∑
σ∈Sk

hσ(θ)

and importance of permutation σ evaluated by

Êhσc [ησi (θ)] =
1

M

M∑
l=1

ησi (θ
(l)) , θ(l) ∼ hσc (θ)

Approximate set A(k) ⊆ S(k) consist of [σ1, · · · ,σn] for the
smallest n that satisfies the condition

φ̂n =
1

M

M∑
l=1

∣∣∣q̃n(θ(l)) − q(θ(l))
∣∣∣ < τ



dual importance sampling with approximation

DIS2A

1 Randomly select {z(j), θ(j)}Jj=1 from Gibbs sample and un-switch
Construct q(θ)

2 Choose hσc (θ) and generate particles {θ(t)}Tt=1 ∼ hσc (θ)

3 Construction of approximation q̃(θ) using first M-sample

3.1 Compute Êhσc
[ησ1 (θ)], · · · , Êhσc

[ησk!
(θ)]

3.2 Reorder the σ’s such that
Êhσc

[ησ1 (θ)] > · · · > Êhσc
[ησk!

(θ)].

3.3 Initially set n = 1 and compute q̃n(θ
(t))’s and φ̂n . If φ̂n=1 < τ,

go to Step 4. Otherwise increase n = n+ 1

4 Replace q(θ(1)), . . . , q(θ(T)) with q̃(θ(1)), . . . , q̃(θ(T)) to

estimate Ê

[Lee & X, 2014]



illustrations

k k! |A(k)| ∆(A)

3 6 1.0000 0.1675
4 24 2.7333 0.1148

Fishery data

k k! |A(k)| ∆(A)

3 6 1.000 0.1675
4 24 15.7000 0.6545
6 720 298.1200 0.4146

Galaxy data

Table: Mean estimates of approximate set sizes, |A(k)|, and the reduction
rate of a number of evaluated h-terms ∆(A) for (a) fishery and (b)
galaxy datasets



Sequential importance sampling

Tempered sequence of targets (t = 1, . . . ,T )

πkt(θk) ∝ pkt(θk) = πk(θk)fk(x|θk)
λt λ1 = 0 < · · · < λT = 1

particles (simulations) (i = 1, . . . ,Nt)

θit
i.i.d.
∼ πkt(θk)

usually obtained by MCMC step

θit ∼ Kt(θ
i
t−1, θ)

with importance weights (i = 1, . . . ,Nt)

ωt
i = fk(x|θk)

λt−λt−1

[Del Moral et al., 2006; Bucholz et al., 2021]



Sequential importance sampling

Tempered sequence of targets (t = 1, . . . ,T )

πkt(θk) ∝ pkt(θk) = πk(θk)fk(x|θk)
λt λ1 = 0 < · · · < λT = 1

Produces approximation of evidence

Ẑk =
∏
t

1

Nt

Nt∑
i=1

ωt
i

[Del Moral et al., 2006; Bucholz et al., 2021]



Rethinking Chib’s solution

Alternate Rao–Blackwellisation by marginalising into partitions
Apply candidate’s/Chib’s formula to a chosen partition:

mk(x) =
fk(x|C

0)πk(C
0)

πk(C0|x)

with

πk(C(z)) =
k!

(k − k+)!

Γ
(∑k

j=1 αj

)
Γ
(∑k

j=1 αj + n
) k∏

j=1

Γ(nj + αj)

Γ(αj)

C(z) partition of {1, . . . , n} induced by cluster membership z
nj =

∑n
i=1 I{zi=j} # observations assigned to cluster j

k+ =
∑k

j=1 I{nj>0} # non-empty clusters



Rethinking Chib’s solution

Under conjugate priors G0 on θ,

fk(x|C(z))
k∏

j=1

∫
Θ

∏
i :zi=k

f (xi |θ)G0(dθ)︸ ︷︷ ︸
m(Ck(z))

and

π̂k(C
0|x) =

1

T

T∑
t=1

IC0≡C(z(t))

I considerably lower computational demand

I no label switching issue



Sequential importance sampling

For conjugate priors, (marginal) particle filter representation of a
proposal:

π∗(z|x) = π(z1|x1)
n∏

i=2

π(zi |x1:i , z1:i−1)

with importance weight

π(z|x)

π∗(z|x)
=
π(x, z)

m(x)

m(x1)

π(z1, x1)

m(z1, x1, x2)

π(z1, x1, z2, x2)
· · · π(z1:n−1, x)

π(z , x)
=

w(z , x)
m(x)

leading to unbiased estimator of evidence

Ẑk(x) =
1

T

T∑
i=1

w(z(t), x)

[Long, Liu & Wong, 1994; Carvalho et al., 2010]



Galactic illustration
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Galactic illustration
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Empirical conclusions

I Bridge sampling, arithmetic mean and original Chib’s method
fail to scale with n, sample size

I Partition Chib’s increasingly variable

I Adaptive SMC ultimately fails

I SIS remains most reliable method



Approximating the DPM evidence

Extension of Chib’s formula by marginalising over z and θ

mDP(x) =
p(x |M∗,G0)π(M

∗)

π(M∗|x)

and using estimate

π̂(M∗|x) =
1

T

T∑
t=1

π(M∗|x ,η(t),K (t)
+ )

provided prior on M a Γ(a, b) distribution since

M |x ,η,K+ ∼ ωΓ(a+K+, b−log(η))+(1−ω)Γ(a+K+−1, b−log(η))

with ω = (a + K+ − 1)/{n(b − log(η)) + a + K+ − 1} and
η|x ,M ∼ Beta(M + 1, n)

[Basu & Chib, 2003]



Approximating the DPM likelihood

Intractable likelihood p(x |M∗,G0) approximated by sequential
importance sampling
Generating z from the proposal

π∗(z|x ,M) =

n∏
i=1

π(zi |x1:i , z1:i−1,M)

and using the approximation

L̂(x |M∗,G0) =
1

T

T∑
t=1

p̂(x1|z
(t)
1 ,G0)

n∏
i=2

p(yi |x1:i−1z
(t)
1:i−1,G0)

[Kong, Lu & Wong, 1994; Basu & Chib, 2003]



Approximating the evidence (bis)

Reverse logistic regression (RLR) applies to DPM:
Importance function

π1(z ,M) := π∗(z |x ,M)π(M) and π2(z ,M) =
π(z ,M |x)
m(y)

{z(1,j),M(1,j)}Tj=1 and {z(2,j),M(2,j)}Tj=1 samples from π1 and π2

marginal likelihood m(y) estimated as intercept of logistic
regression with covariate

log{π1(z ,M)/π̃2(z ,M)}

[Geyer, 1994; Chen & Shao, 1997]



Galactic illustration
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Galactic illustration
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Consistent evidence for location DPM

Consistency of Bayes factor comparing finite mixtures against
(location) Dirichlet Process Mixture
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(left) finite mixture; (right) not a finite mixture



Consistent evidence for location DPM

Under generic assumptions, when x1, · · · , xn iid fP0 with

P0 =

k0∑
j=1

p0j δθ0j

and Dirichlet DP(M,G0) prior on P, there exists t > 0 such that
for all ε > 0

Pf0

(
mDP(x) > n−(k0−1+dk0+t)/2

)
= o(1)

Moreover there exists q > 0 such that

ΠDP

(
‖f0 − fp‖1 6

(log n)q√
n

|x

)
= 1 + oPf0

(1).



Outline

early Gibbs sampling

weakly informative priors

imperfect sampling

Bayes factor

Even less informative prior



Jeffreys priors for mixtures

True Jeffreys prior for mixtures of distributions defined as∣∣Eθ[∇T∇ log f (X |θ)
]∣∣

I O(k) matrix

I unavailable in closed form except special cases

I unidimensional integrals approximated by Monte Carlo tools

[Grazian & X, 2015]



Difficulties

I complexity grows in O(k2)

I significant computing requirement (reduced by delayed
acceptance)

[Banterle et al., 2014]

I differ from component-wise Jeffreys
[Diebolt & X, 1990; Stoneking, 2014]

I when is the posterior proper?

I how to check properness via MCMC outputs?



Further reference priors

Reparameterisation of a location-scale mixture in terms of its
global mean µ and global variance σ2 as

µi = µ+ σαi and σi = στi 1 6 i 6 k

where τi > 0 and αi ∈ R
Induces compact space on other parameters:

k∑
i=1

piαi = 0 and
k∑

i=1

piτ
2
i +

k∑
i=1

piα
2
i = 1

© Posterior associated with prior π(µ,σ) = 1/σ proper with
Gaussian components if there are at least two observations in the
sample

[Kamary, Lee & X, 2018]



Dream or reality?

The clock’s run out,
time’s up over, bloah!
Snap back to reality,
Oh there goes gravity

[Lose Yourself, Eminem, 2002]
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