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Outline

early Gibbs sampling
weakly informative priors
imperfect sampling

Bayes factor

Even less informative prior
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Mixture models

Convex combination of densities

x ~ f; with probability p;,

Chapman & Hall/CRC
. . . Handbooks of Modern
for j=1,2,..., k, with overall density el ethons

_ Handbook of

plfltx] Jr R Pkfk[X) . Mixture Analysis

Usual case: parameterised components

p
Z pif (x|0;) with i pi=1
i—1 i=1

where weights p;'s are distinguished from
component parameters 0;
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Motivations

» Dataset made of several latent/missing/unobserved
groups/strata/subpopulations. Mixture structure due to the
missing origin/allocation of each observation to a specific
subpopulation/stratum. Inference on either the allocations
(clustering) or on the parameters (0, p;) or on the number of
components
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Motivations

» Dataset made of several latent/missing/unobserved
groups/strata/subpopulations. Mixture structure due to the
missing origin/allocation of each observation to a specific
subpopulation/stratum. Inference on either the allocations
(clustering) or on the parameters (0, p;) or on the number of
components

» Semiparametric perspective where mixtures are functional
basis approximations of unknown distributions
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Motivations

» Dataset made of several latent/missing/unobserved
groups/strata/subpopulations. Mixture structure due to the
missing origin/allocation of each observation to a specific
subpopulation/stratum. Inference on either the allocations
(clustering) or on the parameters (0, p;) or on the number of
components

» Semiparametric perspective where mixtures are functional
basis approximations of unknown distributions

» Nonparametric perspective where number of components
infinite (e.g., Dirichlet process mixtures)
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Likelihood

“I have decided that mixtures, like tequila, are inherently
evil and should be avoided at all costs.” L. Wasserman
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Likelihood

For a sample of independent random variables (x1, - , Xn),
likelihood

[ [{ptfaGx) + -+ pifi(xi)} -
i1

computable [pointwise] in O(kn) time.
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Normal mean mixture

Normal mixture

pN(u1, 1) + (1 — p) N(uz, 1)

with only means ; unknown
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Normal mean mixture

Normal mixture

pN(un1,1) +(1—

with only means ; unknown
Identifiability

Parameters 1; and p, identifiable:
cannot be confused with i, when p is
different from 0.5.

Presence of atavistic mode, better
understood by letting p go to 0.5
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Bayesian inference on mixtures

For any prior 7t (0, p), posterior distribution of (0, p) available up
to a multiplicative constant

(0, p) 5 | T3 ps (10| (0,

i=1 j=1

at a cost of order O(kn)
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Bayesian inference on mixtures

For any prior 7t (0, p), posterior distribution of (0, p) available up
to a multiplicative constant

(0, p) 5 | T3 ps (10| (0,

i=1 j=1

at a cost of order O(kn)

Challenge

Despite this, derivation of posterior characteristics like posterior
expectations only possible in an exponential time of order O(k")!
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Challenges from likelihood

1. Number of modes of the likelihood of order O(k!):
(© Maximization / exploration of posterior surface hard

2. Under exchangeable / permutation invariant priors on (6, p)
all posterior marginals are identical:
(© All posterior expectations of 8; equal

W oMo
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Challenges from likelihood

1. Number of modes of the likelihood of order O(k!):
(© Maximization / exploration of posterior surface hard

2. Under exchangeable / permutation invariant priors on (6, p)
all posterior marginals are identical:
(© All posterior expectations of 8; equal

3. Estimating the density much simpler

W oMo

[Marin & X, 2007]
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Missing variable representation

Associate to each x; a missing/latent/auxiliary
variable z; that indicates its component:

Zi|p NMk(Pla- ~7Pk)

and
xi|zi, © ~ f(-16)
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Missing variable representation

Associate to each x; a missing/latent/auxiliary
variable z; that indicates its component:

Zi“p NMk(pl)' ~7Pk)

and
xi|zi, © ~ f(-16)

Completed likelihood

C(e,plx,z) = sz (xil62)

and
7(0, pix, z) [sz, (xil02) ] 7(0,p)

where z = (z1, ..., 2z,) WV i e
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Gibbs sampling for mixture models

Take advantage of the missing data structure:

Algorithm

> Initialization: choose p(®) and 0(©) arbitrarily
> Stept. Fort=1,...
1. Generate z,.(t] (i=1,...,n)from (j=1,...,k)
P (z,-(t) =j|PJ( ]761( ),x,-> x p}til)f (x,~|6}t71)>
2. Generate p ®) from m(plz?)),
3. Generate 0Y) from m(0[z(t), x).

v

[Brooks & Gelman, 1990; Diebolt & X, 1990, 1994; Escobar & West, 1991]
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Normal mean mixture (cont'd)

(a) initialised at random

[X & Casella, 2009]
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Outline

weakly informative priors

V¥ 2O PSLk
WARWICK FARCER._



weakly informative priors

P possible symmetric empirical Bayes priors

p~©(Y7"'vY)a 6,’NN(ﬁ,COO',2), 0-72'\63(\/)/6\-\/)

which can be replaced with hierarchical priors
[Diebolt & X, 1990; Richardson & Green, 1997]

» independent improper priors on 0;'s prohibited, thus standard
“flat” and Jeffreys priors impossible to use (except with the
exclude-empty-component trick)

[Diebolt & X, 1990; Wasserman, 1999]
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weakly informative priors

P reparameterization to compact set for use of uniform priors

eui O-I
. > 0‘. >
Hi 1+emi’ ' 1+ o;

[Chopin, 2000]

» dependent weakly informative priors
pNQ(k"'wl)a ei'\'N(eI'fvaO‘l?—l)ﬂ Gi“’u([oa 0-1'71])

[Mengersen & X, 1996; X & Titterington, 1998]

> reference priors

pNQ(lv"'71)7 eiNN(um(G?—i_T%)/Q)a 0-12N9:+(07T(2))

[Moreno & Liseo, 1999]
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Ban on improper priors

Difficult to use improper priors in the setting of mixtures because
independent improper priors,

k
7 (0) :HTE,'(G,'), with Jﬂ,’(e,‘)dei =00
i=1

end up, for all n's, with the property

JT{(G, plx)dedp =
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Ban on improper priors

Difficult to use improper priors in the setting of mixtures because
independent improper priors,

k
7 (0) :HT[,'(G,'), with Jﬂ,-(@,-)d@,- =00
i=1

end up, for all n's, with the property

JT[(G, plx)dedp =

Reason

There are (k —1)" terms among the k" terms in the expansion
that allocate no observation at all to the i-th component
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Estimating k

When k is unknown, setting a prior on k leads to a mixture of
finite mixtures (MFM)

K ~ px  pmf over N*

Consistent estimation when px puts mass on every integer
[Nobile, 1994; Miller & Harrison, 2018]
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Estimating k

When k is unknown, setting a prior on k leads to a mixture of
finite mixtures (MFM)

K ~ px  pmf over N*

Consistent estimation when px puts mass on every integer
[Nobile, 1994; Miller & Harrison, 2018]

Implementation by

P reversible jump
[Richardson & Green, 1997; Frithwirth-Schnatter, 2011]

> saturation by superfluous components
[Rousseau & Mengersen, 2011]

» Bayesian model comparison

[Berkhof, Mechelen, & Gelman, 2003; Lee & X, 2018]
> cluster estimation

DAUPHINE | PSL%

[Malsiner-Walli, Friihwirth- Scﬁvﬁwg%’fer & Griin/ 2016}



Clusters versus components

“In the mixture of finite mixtures, it is perhaps intuitively
clear that, under the prior at least, the number of clusters
behaves very similarly to the number of components K
when n is large. It turns out that under the posterior they

also behave very similarly for large n.” Miller & Harrison
(2018)
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Clusters versus components

“In the mixture of finite mixtures, it is perhaps intuitively
clear that, under the prior at least, the number of clusters
behaves very similarly to the number of components K
when n is large. It turns out that under the posterior they
also behave very similarly for large n.” Miller & Harrison
(2018)

However Miller & Harrison (2013, 2014) showed that the Dirichlet
process mixture posterior on the number of clusters is typically not
consistent for the number of components

V¥ e psL
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Dirichlet process mixture (DPM)

Extension to the k = 0o (non-parametric) case

X,'|Z,', 9 i.iN.d f(X,'|6Xl.), | = 1, -
P(Zi:k):ﬂk, k:1,2,...
Ty, T, ...~ GEM(M) M ~ (M)
ii.d

01,02,... ~ Gp
with GEM defined by the
stick-breaking representation
k—1
T = Vi (1—v;) v; ~ Beta(1, M)
i=1

[Sethuraman, 1994]
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Dirichlet process mixture (DPM)

Resulting in an infinite mixture

x~ D mif(xil6:)

i=1i=1

with (prior) cluster allocation

COTM) e T
n(zIM)_mM jli[r(nj)

and conditional likelihood

p(x|z, M) HJ H f(xil6;)dGo(8;)

i:zi=j

available in closed form when Gy conjugate ASE e

FARCER.



Outline

imperfect sampling
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Label switching paradox

> We observe the exchangeability of the components
[label switching] to conclude about convergence of the Gibbs
sampler.

[Holmes, Jasra & Stephens, 2005]
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Label switching paradox

> We observe the exchangeability of the components
[label switching] to conclude about convergence of the Gibbs
sampler.

[Holmes, Jasra & Stephens, 2005]

> If we observe it, then marginals are useless for estimating the
parameters.

[Frihwirth-Schnatter, 2001, 2004; Green, 2019]
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Label switching paradox

> We observe the exchangeability of the components
[label switching] to conclude about convergence of the Gibbs
sampler.

[Holmes, Jasra & Stephens, 2005]

> If we observe it, then marginals are useless for estimating the
parameters.

[Frihwirth-Schnatter, 2001, 2004; Green, 2019]

> If we do not, then we are uncertain about the convergence!!!
[Celeux, Hurn & X, 2000]

o
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Constraints

Usual reply to lack of identifiability: impose constraints like

<. <

in the prior
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Constraints

Usual reply to lack of identifiability: impose constraints like

<. <

in the prior

Mostly incompatible with the topology of the posterior surface:
posterior expectations then depend on the choice of the
constraints.
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Constraints

Usual reply to lack of identifiability: impose constraints like

<. <

in the prior

Mostly incompatible with the topology of the posterior surface:
posterior expectations then depend on the choice of the
constraints.

Computational “detail”

The constraint need not be imposed during the simulation but can
instead be imposed after simulation, reordering MCMC output
according to constraints.

>
V¥ U | PSLx
WARWICK FARDCER.



Relabeling towards the mode

Selection of one of the k! modal regions of the posterior,
post-simulation, by computing the approximate MAP

(i*) ; o (i)
(6,p) with l—argiimaXMT[{(&p) Ix}

ey
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Relabeling towards the mode

Selection of one of the k! modal regions of the posterior,

post-simulation, by computing the approximate MAP

(G,p)(i*) with " =arg maXMT[{(&p)(")

Pivotal Reordering

At iteration i € {1,..., M},
1. Compute the optimal permutation

T; = arg min d (T{(G(’),p(i)), (G(i*),p(’*

TES

where d(-,-) distance in the parameter space.
2. Set (81, p!) = 7;((0""), p1")).

IX}

")

v

[Celeux, 1998; Stephens, 2000; Celeux, Hurn & X, 2000]

WAR\N\CK

CrNe | PSLok
FADCER.



Loss functions for mixture estimation

Global that considers
distance between predictives

L(&,8) = J x)log { e ()/f: (x) } dx

eliminates the labelling effect

Similar solution for estimating clusters
through allocation variables

Lz2) = ) (T (1 = Tigmg)) + Lgmg) (1= Ty -

[Celeux, Hurn & X, 2000]

vy
WARWICK

o
DAUPHINE | PSL%

FARCER.



Outline

Bayes factor
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Bayesian model choice

Comparison of models 9Jt; by Bayesian means:

probabilise the entire model /parameter space
P allocate probabilities p; to all models 2i;
> define priors 71;(0;) for each parameter space ©;

> compute
PIJ fi(x]0;)7t;(0;)d6;
@.

Z”JJ. (x]0;)7t;(0;)d6;

mt(Milx) =

[Chen, Shao & Ibrahim, 2000; Marin & X, 2007]
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Bayesian model choice

Comparison of models 9Jt; by Bayesian means:

Relies on a central notion: the evidence
3k :J 0 (04 ) Lic (O ) dO,
Ok

aka the marginal likelihood.
Computational difficulty on its own
[Chen, Shao & lbrahim, 2000; Marin & X, 2007]
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Validation in mixture setting

“In principle, the Bayes factor for the MFM versus the
DPM could be used as an empirical criterion for choos-
ing between the two models, and in fact, it is quite easy
to compute an approximation to the Bayes factor using
importance sampling” Miller & Harrison (2018)

Bayes Factor consistent for selecting number of components
[Nobile, 1994; Ishwaran et al., 2001; Casella & Moreno, 2009; Chib and Kuffner, 2016]

Bayes Factor consistent for testing parametric versus
nonparametric alternatives

[Verdinelli & Wasserman, 1997; Dass & Lee, 2004; McVinish et al., 2009]
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Consistent evidence for location DPM

Consistency of Bayes factor comparing finite mixtures against
(location) Dirichlet Process Mixture

log(BF)
ok N W s U oo N o®

0 250 500 750 1000 1250 1500 1750 2000 0 200 400 600 800 1000
n n
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Consistent evidence for location DPM

Under generic assumptions, when xq, -, x, iid fp, with

ko
_ 0
Po = Z pj 595)
j=1
and Dirichlet DP(M, Gg) prior on P, there exists t > 0 such that
forall e >0

Py, (mDP(X) > n—(k0—1+dko+t)/2> — o(1)

Moreover there exists g > 0 such that

(log n)9

NG

Mor <Hf0_fp”1 <

>
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Chib’s representation

Direct application of Bayes' theorem: given x ~ i (x|0,) and
Ok ~ Tk (04),
fi(x10k) 7k (Ok)

T (0 /%)

3k = mi(x) =

>
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Chib’s representation

Direct application of Bayes' theorem: given x ~ i (x|0,) and
Ok ~ Tk (04),
fi(x10k) 7k (Ok)

T (0 /%)

3k = mk(x) =
Replace with an approximation to the posterior

fie (x[0) 71 (0%)

3k = m(x) = A (811x)

[Chib, 1995]
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Case of latent variables

For missing variable z as in mixture models, natural Rao-Blackwell

estimate
T

==(Q* 1 *
T(OFhx) = = 3 m(OFlx,z, ),
t=1

where the z,(f)’s are Gibbs sampled latent variables

[Diebolt & Robert, 1990; Chib, 1995]
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Compensation for label switching

For mixture models, zgf) usually fails to visit all configurations in a

balanced way, despite the symmetry predicted by the theory
Consequences on numerical approximation, biased by an order k!
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Compensation for label switching

For mixture models, zgf) usually fails to visit all configurations in a

balanced way, despite the symmetry predicted by the theory
Consequences on numerical approximation, biased by an order k!
Recover the theoretical symmetry by using

1
T (OkIx) = T E E i (o(0F)x, zk)).
’ 0EG, t=1

for all o's in &, set of all permutations of {1,..., k}
[Berkhof, Mechelen, & Gelman, 2003]
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Galaxy dataset (k)
Using Chib’s estimate, with 0} as MAP estimator,
log(3x(x)) = —105.1396
for k = 3, while introducing permutations leads to

log(34(x)) = —103.3479
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Galaxy dataset (k)
Using Chib’s estimate, with 0} as MAP estimator,
log(3(x)) = —105.1396
for k = 3, while introducing permutations leads to
log(3x(x)) = —103.3479

Note that
—105.1396 + log(3!) = —103.3479
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Galaxy dataset (k)
Using Chib’s estimate, with 0} as MAP estimator,
log(3x(x)) = —105.1396
for k = 3, while introducing permutations leads to

log(34(x)) = —103.3479

Note that

—105.1396 + log(3!) = —103.3479
k | 2 3 4 5 6 7 8
3k(x) | -115.68 -103.35 -102.66 -101.93 -102.88 -105.48 -108.44

Estimations of the marginal likelihoods by the symmetrised Chib's
approximation (based on 10° Gibbs iterations and, for k > 5, 100 permutations

selected at random in &y). WV o psLx
WARWICK FARCER.
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More efficient sampling

Difficulty with the explosive numbers of terms in

MO = = > an ALY

! 0ES, t=1

when most terms are equal to zero...
Iterative bridge sampling:

M,

- e - #(0/Ix)
¢ (k) = etV (k) Myt _ _
. ) My ; Mlq(e')+Mzﬁ(e'|x)/

M,

q(6™)

My

= Myq(6m) + MoR(87)x)

[Frihwirth- Schnatter 2004]
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More efficient sampling

Iterative bridge sampling:

¢ (k) = =V (k) M2 % R(0']x) _ /
b Mig(6') + Ma(0/[x)
M.
M-t - C/(em)
2 A= Myq(Bm) + Mos(BmIx)
[Friihwirth-Schnatter, 2004]
where
1 J1 k
) . )
a®) = > plez/N]] pledel) e 20 x)
j=1 i=1

>
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More efficient sampling

Iterative bridge sampling:

My A/
~ ~ 7t
Qf(t)(k) _ Qz(tfl)(k) M;l Z _ (e |X) _ /

2 Mrq(0)) + MyR(8/]x)

M. A

M1 < q(0™)
2 Mig(6m) + Mos(8mIx)
[Frihwirth-Schnatter, 2004]
or where
k

q(6) :% D plolo(z?) [ [ pléiloles;), o(€2)), 0(z°),x)

" 0eS (k) i=1

>
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Further efficiency

After de-switching , representation of importance
function as
1 & 1
_ () -
a(0) =7 > > mlelo(eV).x) = 1 X he(0)
j=10e6y eSSy

where hg associated with particular mode of g
Assuming generations

how many of the hy(8(t)) are non-zero?

>
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Sparsity for the sum

Contribution of each term relative to g(0)

hs(6)  hg,(6)
k'q(0) - ZO‘GGk hs(0)

and importance of permutation o evaluated by

Ne(0) =

]Ehcrc No, (0 = an 7 0 ~ h,_(0)

Approximate set (k) € &(k) consist of [01,--- , 0,] for the
smallest n that satisfies the condition

] <~

P
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dual importance sampling with approximation

DIS2A

Randomly select {z/), 01}/, from Gibbs sample and un-switch

Construct q(0)
Choose h,_(0) and generate particles {8(9}7_, ~ h,_(0)
Construction of approximation §(0) using first M-sample

31 Compute By, Moy (0)],+ ,Epy Moy, (0)]

3.2 Reorder the o's such that_
Eho oy (0> > Bpo Moy, (01

3.3 Initially set n = 1 and compute z,n(e“) )'sand ¢p. If bpo1 <7,
go to Step 4. Otherwise increase n =n-+1

Replace q(6)),...,g(0™)) with §(6™),...,§(0")) to

estimate €&

[Lee & X, 2014]
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illustrations

k! | A&

>~ W x

6 | 1.0000 0.1675
24 | 2.7333 0.1148

Fishery data

k k! 1A( k)] A

3 6 1.000 0.1675

4 24 | 157000 0.6545

6 720 | 298.1200 0.4146
Galaxy data

Table: Mean estimates of approximate set sizes, |[2((k)|, and the reduction
rate of a number of evaluated h-terms A(2() for (a) fishery and (b)

galaxy datasets
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Sequential importance sampling

of targets (t=1,...,T)
T (0k) o Pre(0) = i (B4 fi(x10) Ay =0<---<Ar=1

particles (simulations) (i =1,..., N¢)

ciid.
elt ~ T (Ok)

usually obtained by MCMC step
0, ~ Ke(0}_1,0)
with importance weights (i = 1,..., N;)
wf = fi(xlg )N

[Del Moral et al., 2006; Bucholz et al  2021]
VYV oAU PSLx
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Sequential importance sampling

Tempered sequence of targets (t=1,...,T)

T (0) X Pre(0k) = 70k (O ) fi (X104 ) AM=0<---<Ar =1

Produces approximation of evidence

[Del Moral et al., 2006; Bucholz et al., 2021]
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Rethinking Chib's solution

Alternate Rao—Blackwellisation by marginalising into partitions

Apply to a chosen partition:
 fi(xI€®) Ty (€9)
AT
with
k . k
k! M 2j=1% Ini + «;)
T (€(z)) = ( ) —

_ | K ;
(k— k) p (Zj:1 o + ,,) i o)
€(z) partition of {1,..., n} induced by cluster membership z
nj = Z,’-':l I;,,—j # observations assigned to cluster j

ky = Zjl-;l Lin;>0 # non-empty clusters

P
V¥ U | PSL%
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Rethinking Chib's solution

Under conjugate priors Gg on 0,

k
aixe) ]| TT foe)Gotae)

j=1 i:zi=k
m(€(z))

and
Q:O|X Z ]ICO

» considerably lower computational demand

» no label switching issue

vy
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Sequential importance sampling

For conjugate priors, (marginal) particle filter representation of a

proposal:
n

7 (zlx) = m(z1lxa) | [ mlzixai, z1i-1)

i=2
with importance weight
n(zlx) _ mlx,z) mxa) mlz,x,xe) 0 m(Zie1,X) - w(zx)
m(zlx)  m(x) 7(z1,x1) 7(z1, x1, 22, x2) 7(z, x) m(x)

leading to unbiased estimator of evidence

1 T
3ix) =+ ; w(z!,x)

[Long, Liu & Wong, 1994; Carvalho et al., 2010]
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illustration

Galactic
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Galactic illustration

log(MSE)

=" ChibPartitions A - A A :73_
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Empirical conclusions

» Bridge sampling, arithmetic mean and original Chib's method
fail to scale with n, sample size

> Partition Chib's increasingly variable
» Adaptive SMC ultimately fails

» SIS remains most reliable method
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Approximating the DPM evidence

Extension of Chib's formula by marginalising over z and 0

mop(x) — PEIM®: Go)(M*)
bPAzI = (M*|x)

and using estimate
-
R(M*|x) = Z (M*Ix,n®), k)

provided prior on M a T'(a, b) distribution since
Mix,n, Ky ~ wl'(a+K, b—log(n))+(1—w)l'(a+K—1, b—log(n))

with w = (a+ K, — 1)/{n(b— log(n)) +a+ K, — 1} and
nlx, M ~ Beta(M + 1, n)
[Basu,& Chih, 2003]
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Approximating the DPM likelihood

Intractable likelihood p(x|M*, Gy) approximated by sequential
importance sampling
Generating z from the proposal

Z|X | |7TZI|Xllazll 1, )
and using the approximation

pxalz, Go) T plyilxrio12L") |, Go)
=2

~l=
M~

.~+
|
-

L(xIM*, Go) =

[Kong, Lu & Wong, 1994; Basu & Chib, 2003]
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Approximating the evidence (bis)

(RLR) applies to DPM:
Importance function

mt(z, M|x)

m1(z, M) = 7" (z|x, M)t(M) and mo(z, M) = )

(z(1), M(lJ)}J-Tzl and {z(2J), MQJ)}J-T:l samples from 717 and 71,

marginal likelihood m(y) estimated as intercept of logistic
regression with covariate

log{nl (27 M)/TNQ(Zv M)}

[Geyer, 1994; Chen & Shao, 1997]
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Galactic illustration

-23.224

-23.232

-23.240

—23.248

|= —23.256

& 3264
-23.272
-23.280
-23.288

—23.296

n=6 n=36 n=82
© -212
-104
-216
-105
106 -220 o
0

o7 - — |
< o

-108 228

° -109 -232
8
=110 —236
o
- -240
- <
& &S & & & &
& & & S
A & & & &

vV O psLx
WARWICK FARCER.



Galactic illustration
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Consistent evidence for location DPM

Consistency of Bayes factor comparing finite mixtures against
(location) Dirichlet Process Mixture

et

0 250 500 750 1000 1250 1500 1750 2000 0 200 400 600 800
n

log(BF)
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n

(left) finite mixture;  (right) not a finite mixture
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Consistent evidence for location DPM

Under generic assumptions, when xq, -, x, iid fp, with

ko
_ 0
Po = Z pj 595)
j=1
and Dirichlet DP(M, Gg) prior on P, there exists t > 0 such that
forall e >0

Py, (mDP(X) > n—(k0—1+dko+t)/2> — o(1)

Moreover there exists g > 0 such that

(log n)9

Jn

Mo (ufo—fpul < |x) — 1+ op, (1),

>
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Outline

Even less informative prior
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Jeffreys priors for mixtures

True Jeffreys prior for mixtures of distributions defined as

[Eo [V'V1og f(X|0)]]

» O(k) matrix

» unavailable in closed form except special cases

» unidimensional integrals approximated by Monte Carlo tools
[Grazian & X, 2015]
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Difficulties

> complexity grows in O(k?)

> significant computing requirement (reduced by delayed
acceptance)
[Banterle et al., 2014]

» differ from component-wise Jeffreys
[Diebolt & X, 1990; Stoneking, 2014]

» when is the posterior proper?

» how to check properness via MCMC outputs?

vV O | psLx
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Further reference priors

Reparameterisation of a location-scale mixture in terms of its

global mean p and global variance 02 as

u=u+ox; and ©; =o0T; 1<i<k

where T; > 0 and o; € R
Induces compact space on other parameters:

K K k
> piaj=0 and )Y pri+ )Y poi=1
i—1 i—1 i—1

(© Posterior associated with prior 7t(p, 0) = 1/0 proper with
Gaussian components if there are at least two observations in the
sample

[Kamary, Lee & X, 2018]
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Dream or reality?

The clock’s run out,
time’s up over, bloah!
Snap back to reality,
Oh there goes gravity

[Lose Yourself, Eminem, 2002]
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