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Introduction

We consider the problem of predicting extreme values

for environmental data. Events such as extreme precipi-

tation and storm wind speed are characterized by limited

predictability and are spatial in extent.

The goal is to producemaps of precipitation return levels

of the area of interest.

We propose a spatial hierarchical Bayesian extreme

valuemodel (sHMEV)where the asymptotic assumption,

typical of the traditional extreme value theory, is relaxed.

Spatial dependence is characterized by geographical co-

variates and effects not fully described by the covariates

are captured by spatial structure in the hierarchies.

Motivating application

We analyze a collection of spatially distributed daily

time series of precipitation in North Carolina (USA).

The data refers to 27 different stations and a

significant fraction of the available records is longer

than 100 years.

The data are extracted from the United States

Historical Climatological Network (USHCN) data.

Figure 1 shows the station locations.

Figure 1. Map of North Carolina showing the sites and altitude in meters above

sea level of the weather stations.

Background

Notation

xij(s) is the magnitude of the i-th event within the

j-th block for the site s.

J is the number of block, S is the number of sites and

nj(s) is the number of events observed within the j-th
block for the site s.

The quantity of interest is the cdf of block maxima

Yj(s) = maxi{Xij(s)}:

Pr(Yj(s) ≤ y) = F (y; θj(s))nj(s).

Traditional approaches

� block maxima with generalized extreme value

distribution (GEV) (Gnedenko, 1943);

� peaks over threshold (POT) with generalized Pareto

distribution (Pickands, 1975).

These methods are based on asymptotic arguments and

focus only on a small portion of data.

Possible problems:

× the number of events per block may be often not

large enough for the asymptotic argument to hold;

× the assumption of a constant parent distribution is

unrealistic in many contexts.

A spatial Hierarchical Bayesian
extreme value model

General formulation

xij(s) conditionally on unobserved latent processes

are realizations of conditionally independent random

variables with common cdf F (·; θj(s)), with θj(s)
unknown parameter vector;

nj(s) are realizations of random variables with

probability distribution p{·; λ(s)}, where λ(s) is an
unknown parameter vector.

Figure 2. Graphical representation of the spatial hierarchical model.

We further assume that θj(s) are realizations of a
stochastic process with conditional probability density

function g{·; η(s)}, where η(s) is an unknown vector

of parameters.

The latent spatial processes, η(s) and λ(s) are
deterministic functions of parameter β and spatial

covariates.

We can estimate the cdf of maxima marginalizing out

the variables nj(s) and θj(s), i.e.

∑
n≥0

∫
Θ

F{y; θ(s)}n(s) p{n(s); λ(s)} g{θ(s); η(s)}dθ(s).

Prior elicitation and posterior computation

In defining the prior distributions we seek to harness

information on the physical processes generating the

data, avoiding strongly uninformative priors.

Inference about the parameters and spatio-temporal

predictions are obtained via MCMC simulation.

Main advantages

X The Bayesian approach allows the inclusion of

valuable prior information that are often present in

environmental modeling.

X Spatial modeling of extremes is expected to reduce

the overall uncertainty in quantile estimates, by

borrowing strength across different sites.

X Uncertainty measures on the quantile estimates result

naturally from the sampling procedure in the Bayesian

framework.

X By modeling the ordinary events the variability of

estimates decreases, especially when the sample size

is low.

Simulation study

Scenarios: WEI correctly specified, GAM and WEIgp

misspecified.

Competitors: sHMEV, HMEV (Zorzetto et al., 2020),

Bayesian implementation of GEV.

Fractional square error (FSE): evaluate the predictive

accuracy in estimating the distribution of block

maxima, considering both precision and variability of

estimates.

Figure 3 shows the empirical distribution of the FSE

over the sites, computed on the test set.

Figure 3. Fractional square error computed for the 3 different model

specifications.

Figure 4 shows quantile versus return time plots for

two sites.

Figure 4. Expected value of the quantile for a given return time and 90%

credibility intervals. Circles represent the observed block maxima on training set,

while the black lines report the quantiles computed from the true sHMEV model.

North Carolina rainfall data analysis

Figure 5 shows the maps of the predictive pointwise

25 and 50 year return level estimates for rainfall (mm)

obtained from the sHMEV model.

Figure 5. The upper and bottom rows show the lower and upper bounds of the

90% pointwise credible intervals, the middle row shows the predictive pointwise

posterior mean.
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