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Spatial transcriptomic experiments

The 10X-Visium technology

n: the number of genes, whose expression is

measured in every spot;

p: the number of spots;
1 spot usually contains more cells;

the position of each spot on the grid is known.

Figure 1. Breast tissue sample analysed with 10X-Visium.

The new 10X-Visium transcriptomic protocol is a modern sequencing technology that allows

scientists to achieve a full mapping of the cellular structure of a tissue sample in a relatively easy

manner.

The rise of such advanced technology has increased the interest for the so-called spatially

expressed (s.e.) genes [1].

Research issues

1. Determining the clustering of the areas of the tissue sample according to the spatial variation of

the genes.

2. Testing if there exist clusters of genes which are spatially expressed only in some specific areas

discovered from i.).

3. Determining the highly variable genes in the areas discovered from i.) net of any spatial effect.

SpaRTaCo: a co-clustering model for spatially resolved data

We assume the n × p data matrix X can be partitioned into K · R blocks, each of which

representing a specific co-cluster:

X =

X11 . . . X1R

... . . . ...

XK1 . . . XKR

 , dim(Xkr) = nk × pr.

Definition The block matrix Xkr is a set of nk genes whose expression is measured in pr spots. The spatial

coordinates of the spots are contained in the matrix Sr of dimension pr × 2.

Let {Zi} and {Wj} be the clustering variables of the genes and of the cells. The block Xkr is made

by the the rows {i = 1, . . . , n : Zi = k} and the columns {j = 1, . . . , p : Wj = r}.
We model the row i of block (k, r) as

xkr
i. = µkr1pr + σkr,iε

kr
i. , i = 1, . . . , nk, (1)

σ2
kr,i ∼ IG(αkr, βkr), εkr

i. ∼ N (0, ∆kr), (2)

where µkr ∈ R is the co-cluster mean, σ2
kr,i is a gene-specific variance, εkr

i. is a Gaussian process

with covariance matrix

∆kr = τkrK(Sr; φr)
spatial effect

+ ξkrIpr
nugget effect

,

where K(·; ·) is a spatial covariance function parametrized by φr and τkr, ξkr > 0.
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Figure 2. DAG of Model (1) - (2). Grey circle denotes the data, white circles are the unknown random variables, and

white rectangles are the model parameters.

The log-likelihood function

To make the model identifiable, we impose a constraint of the type τkr + ξkr = c for any k and r.

The estimate of the model parameters are taken by maximizing the classification log-likelihood

`(Θ, {Zi}, {Wj}) =
n∑

i=1

K∑
k=1

1(Zi = k)


R∑

r=1
log p(x.r

i. ; θkr, φr)

 (3)

where p(·; ·) is the marginal model of xkr
i , with σ2

kr,i integrated out, x.r
i. is the i-th row of the matrix

X.r, and θkr = {µkr, τkr, αkr, βkr}.
The number of clusters K and R and the spatial covariance function K(·|·) are selected using the

ICL criterion. We consider here the exponential covariance function: exp{−||sj − sj′||/φr}.

The CS-EM estimation algorithm

Our estimation algorithm iterates the following steps until convergence.

1. Given {Zi} and {Wj}, find Θ̂ that maximizes (3).

2. Given {Wj} and Θ̂, update the row clusters with a classification step (CEM algorithm) as in [2].

3. Given {Zi} and Θ̂, propose a new column clustering configuration {W̃j} as in [3], and accept it

with a Metropolis-Hastings move (SEM algorithm).

The Human Dorsolateral Prefrontal Cortex

We consider the human dorsolateral prefrontal cortex (DLPFC) spatial transcriptomic dataset

analysed with 10X-Visium and contained in the R package spatialLIBD.
We pre-process the dataset with the tools proposed by [4] and implemented in the R package

scry; the final dataset analysed is made of 500 genes measured in 3639 spots.

Genes in the second cluster (n2 = 129)
have an estimate of the

spatial-nugget effect ratios τ2r/ξ2r
substantially larger than those in the

first (n1 = 371), for every region
r = 1, . . . , 9.
The largest level of spatial expression

is obtained in the first spot cluster

(p1 = 243).

1
2
3
4
5
6
7
8
9

Figure 3. Example of a human DLPFC sample. The spots are

coloured according to estimated clusters.
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Figure 4. Left: Representation of X divided into the estimated blocks, coloured according to µ̂kr (left) and to τ̂kr/ξ̂kr (right).

By exploiting the distribution of the gene variance σ2
i |X, {Zi}i, {Wj}j it is possible to determine

the highly variable genes in every cluster of spots.

For example, within the area r = 1 which corresponds to the white matter area, the gene CERCAM
appears as highly variable, even though the pre-selection techniques of [4] did not consider it as

highly variable (see the left panel of Figure 4).
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Figure 5. Left: Distribution of σ2
i |data in region r = 1. Right: Expression of gene CERCAM over the whole image.
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