

Clustering activation patterns of spatially-referenced neurons

Laura D'Angelo, Antonio Canale and Michele Guindani

Statistical methods and models for complex data — Poster Session: 21 September 2022

Abstract

We describe a Bayesian nonparametric mixture model that allows for simultaneous deconvolution of series of neuronal activity and clustering of the signal based on common patterns of activation. The model makes use of a latent continuous process for the spike probabilities to identify groups of co-activating cells. Neurons' spatial dependence is also introduced through the mixture weights.

Calcium imaging data

Motivating application

- Neighboring neurons are often organized in groups with similar functional characteristics; however, the anatomical organization of the hippocampus is still uncertain.

Prior distributions

On $a_{i,t}$ we place a DP mixture of Gamma, to account for the heterogeneity of spikes' amplitudes:

 $a_{i,t} \mid P \sim P$ $P = \sum_{k \ge 1} \omega_k \delta_{a_k^*}$ $\{\omega_k\}_{k \ge 1} \sim \text{stick-breaking}$ $a_k^* \stackrel{i.i.d.}{\sim} \text{Gamma}$

On parameters (b_i , γ , σ^2 , τ^2) we place prior distributions as in D'Angelo et al. 2022.

Prior on s_i : location-dependent mixture of latent Gaussian processes

Instead of working directly with the binary time series, we introduce a (transformed) latent Gaussian process (GP) $\tilde{\mathbf{s}}_i = (\tilde{s}_i(t), t \ge 0)$ that controls the spike probability over time: $s_{i,t} | \tilde{\mathbf{s}}_i \sim \text{Bernoulli} \left(\Phi(\tilde{s}_i(t)) \right)$ indep. for $t = 1, \dots, T$

- Need to identify clusters of neurons with similar patterns of activity over time.
- Activity is described by *spike trains*: **binary series representing active/resting state** of each neuron at each time point.

Technique and data

The technique of calcium imaging allows visualization of the intra-cellular **concentra**tion of calcium over time. This is a proxy of the activity of populations of neurons over time.

Transient high levels in the observed calcium indicate the neurons' activations.

A clustering of co-activating neurons is obtained by looking for similarities in the temporal patterns of these activations.

The spatial location of each neuron in the region of interest is also available.

where $\Phi(\cdot)$ is the cumulative distribution function of a standard Gaussian distribution. We apply the probit stick-breaking process of Rodríguez and Dunson (2011) to define a Σ -informed mixture prior on \tilde{s}_i :

$$\tilde{\mathbf{s}}_i \mid G_{\Sigma} \sim G_{\Sigma} \qquad G_{\Sigma} = \sum_{k \ge 1} \pi_k(\Sigma) \cdot \delta_{\tilde{\mathbf{s}}_k^*}$$
$$\pi_k(\Sigma) = \Phi(\alpha_k) \prod_{r < k} \left(1 - \Phi(\alpha_r) \right) \qquad \text{with } \alpha \sim N_n(0, \Sigma).$$

The atoms of the mixture are independent draws from a GP over time,

$$\tilde{\mathbf{s}}_k^* \mid \boldsymbol{\theta} \sim \mathsf{GP}(\boldsymbol{\mu}, \boldsymbol{\Omega})$$

where $\Omega = \Omega(t, t')$ is the covariance function, modeling the temporal dependence.

Calcium traces

Time

Figure: Calcium traces of 15 neurons (black lines). The colored segments indicate detected activations.

Challenges

- the series of activations have to be extracted and clustered \rightarrow limits of two-step approaches;
- scarcity of clustering methods for binary time series;
- spikes are not uniformly distributed over time: an increase in the observed calcium is usually the result of several consecutive spikes \rightarrow interest in modeling the temporal dependence of activations;
- the neurons' locations provide useful information on possible existing spatial **dependence** structures between neurons \rightarrow neighboring neurons should have a higher prior probability of being assigned to the same group.

Model formulation

Calcium dynamics

We adopt a popular model (Vogelstein et al. 2010) to describe the calcium dynamics and how it relates with the underlying activity.

For neuron i at time t, (i = 1, ..., n and t = 1, ..., T): $y_{i,t}$ observed fluorescence trace; $c_{i,t}$ true calcium concentration. We write

$$y_{i,t} = b_i + c_{i,t} + \epsilon_{i,t}, \qquad \epsilon_{i,t} \sim \mathcal{N}(0, \sigma^2),$$
$$c_{i,t} = \gamma c_{i,t-1} + \mathbf{s}_{i,t} \cdot \mathbf{a}_{i,t} + w_{i,t}, \qquad w_{i,t} \sim \mathcal{N}(0, \tau^2),$$

with b_i baseline parameters; γ a decay parameter, modeling the autoregressive calcium behavior; and $\epsilon_{i,t}$ and $w_{i,t}$ independent Gaussian errors.

Figure: Graphical representation of the data generating process.

Real data application

We considered a population of 124 hippocampal neurons, and we performed a timevarying clustering by considering 3 non-overlapping windows of 300 time points each.

• The **neuronal activations** are represented by the binary time series

 $s_i = (s_{i,1}, \ldots, s_{i,T}), \text{ with } s_{i,t} \in \{0, 1\}.$

• The **spikes' amplitudes** are described by the parameters $a_{i,t} \in \mathbb{R}^+$, and they are defined conditionally on $s_{i,t} = 1$.

Neurons' locations: spatial coordinates $l_i = (l_{i,1}, l_{i,2})$. Specifically, we consider the **proximity matrix** $\Sigma = \Sigma(l_i, l_j)$, for $i, j = 1, \ldots, n$, measuring the closeness between neurons.

Figure: Top: calcium traces, sorted and colored according to the estimated cluster allocation. Bottom: neurons' locations, colored according to the cluster assignment (colors reflect the corresponding top plot).

References

D'Angelo, L., Canale, A., Yu, Z., and Guindani, M. (2022). "Bayesian nonparametric analysis for the detection of spikes in noisy calcium imaging data". In: Biometrics, pp. 1–13. Rodríguez, A. and Dunson, D. (2011). "Nonparametric Bayesian models through probit stick-breaking processes". In: Bayesian Analysis 6, pp. 145–178. Vogelstein, J. T., Packer, A. M., et al. (2010). "Fast nonnegative deconvolution for spike train inference from population calcium imaging". In: Journal of Neurophysiology 104.6, pp. 3691–3704.

2022 - Statistical methods and models for complex data, Padova