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Abstract

We describe a Bayesian nonparametric mixture model that allows for simultaneous de-

convolution of series of neuronal activity and clustering of the signal based on common

patterns of activation. The model makes use of a latent continuous process for the spike

probabilities to identify groups of co-activating cells. Neurons’ spatial dependence is also

introduced through the mixture weights.

Calcium imaging data

Motivating application

Neighboring neurons are often organized in groups with similar functional

characteristics; however, the anatomical organization of the hippocampus is still

uncertain.

Need to identify clusters of neurons with similar patterns of activity over time.

Activity is described by spike trains: binary series representing active/resting state

of each neuron at each time point.

Technique and data

The technique of calcium imaging allows visualization of the intra-cellular concentra-

tion of calcium over time. This is a proxy of the activity of populations of neurons

over time.

Transient high levels in the observed calcium indicate the neurons’ activations.

A clustering of co-activating neurons is obtained by looking for similarities in the tem-

poral patterns of these activations.

The spatial location of each neuron in the region of interest is also available.
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Figure: Calcium traces of 15 neurons (black lines). The colored segments indicate detected activations.

Challenges

the series of activations have to be extracted and clustered → limits of two-step

approaches;

scarcity of clustering methods for binary time series;

spikes are not uniformly distributed over time: an increase in the observed calcium

is usually the result of several consecutive spikes → interest in modeling the

temporal dependence of activations;

the neurons’ locations provide useful information on possible existing spatial

dependence structures between neurons → neighboring neurons should have a

higher prior probability of being assigned to the same group.

Model formulation

Calcium dynamics

We adopt a popular model (Vogelstein et al. 2010) to describe the calcium dynamics

and how it relates with the underlying activity.

For neuron i at time t, (i = 1, . . . , n and t = 1, . . . , T ): yi,t observed fluorescence trace;

ci,t true calcium concentration. We write

yi,t = bi + ci,t + εi,t, εi,t ∼ N(0, σ2),
ci,t = γ ci,t−1 + si,t · ai,t + wi,t, wi,t ∼ N(0, τ 2),

with bi baseline parameters; γ a decay parameter, modeling the autoregressive cal-

cium behavior; and εi,t and wi,t independent Gaussian errors.

The neuronal activations are represented by the binary time series

si = (si,1, . . . , si,T ), with si,t ∈ {0, 1}.

The spikes’ amplitudes are described by the parameters ai,t ∈ R+, and they are

defined conditionally on si,t = 1.

Neurons’ locations: spatial coordinates li = (li,1, li,2). Specifically, we consider the
proximity matrix Σ = Σ(li, lj), for i, j = 1, . . . , n, measuring the closeness between
neurons.

Prior distributions

On ai,t we place a DP mixture of Gamma, to account for the heterogeneity of spikes’

amplitudes:

ai,t | P ∼ P P =
∑
k≥1

ωkδa∗
k

{ωk}k≥1 ∼ stick-breaking a∗
k

i.i.d.∼ Gamma

On parameters (bi, γ, σ
2, τ 2) we place prior distributions as in D’Angelo et al. 2022.

Prior on si: location-dependent mixture of latent Gaussian processes

Instead of working directly with the binary time series, we introduce a (transformed)

latent Gaussian process (GP) s̃i =
(
s̃i(t), t ≥ 0

)
that controls the spike probability

over time:

si,t | s̃i ∼ Bernoulli

(
Φ
(
s̃i(t)

))
indep. for t = 1, . . . , T

where Φ(·) is the cumulative distribution function of a standard Gaussian distribution.
We apply the probit stick-breaking process of Rodríguez and Dunson (2011) to define

a Σ-informed mixture prior on s̃i:

s̃i | GΣ ∼ GΣ GΣ =
∑
k≥1

πk(Σ) · δs̃∗
k

πk(Σ) = Φ(αk)
∏
r<k

(
1 − Φ(αr)

)
with α ∼ Nn(0, Σ).

The atoms of the mixture are independent draws from a GP over time,

s̃∗
k | θ ∼ GP(µ, Ω)

where Ω = Ω(t, t′) is the covariance function, modeling the temporal dependence.
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Figure: Graphical representation of the data generating process.

Real data application

We considered a population of 124 hippocampal neurons, and we performed a time-

varying clustering by considering 3 non-overlappingwindows of 300 time points each.
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Figure: Top: calcium traces, sorted and colored according to the estimated cluster allocation. Bottom: neurons’ locations,

colored according to the cluster assignment (colors reflect the corresponding top plot).
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