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Motivation

We propose a variational algorithm for performing ap-

proximate Bayesian inference and Bayesian belief up-

dating for mixed regression and classification models.

Specifically, we combine mean field and parametric vari-

ational approximations to handle both non–conjugate

and non–regular models within a unified algorithmic ap-

proach.

Following Bissiri et al. (2016), we consider models de-

fined by aminimum risk criterion for which a proper like-

lihood function may not be available. Then, the general-

ized posterior, or belief update, we try to approximate is

given by

p(θ|y) ∝ p(θ) exp{−nR(θ; y)}, (1)

whereR(θ; y) is a risk function linking the parameter θ ∈
Θ and the data y ∈ Y .

Model specification

Empirical risk function

We consider regression and classification models which

attempt to predict the response yi using the linear predic-
tor ηi. We measure the misfit between yi and ηi through
the (negative) empirical risk function, i.e. pseudo–

likelihood,

− nR(θ; y) = −n
α

log σ2
ε −

1
ασ2

ε

n∑
i=1

ψ(yi, ηi), (2)

where ψ(y, η) is a loss function, σ2
ε is a dispersion param-

eter and α is a non–stochastic constant.

Figure 1. Examples of variational loss functions as defined in Equation (9).

Mixed and additive linear model

We assume an additive model specification for the linear

predictor, that is

ηi = (Xβ + Zu)i, Zu =
h∑
h=1

Zhuh, (3)

where C = (X,Z1, . . . ,Zh) and u = (u>1 , . . . ,u>h )>. The
term Xβ is the fixed effect component, while Zhuh is the

h–th random effect component.

Prior distributions

We assume the following set of prior distributions:

uh|σ2
h ∼ Ndh(0dh, σ2

hQ−1
h ), σ2

h ∼ IG(Ah, Bh),

β ∼ Np(0p, σ2
βIp), σ2

ε ∼ IG(Aε, Bε),
(4)

where σ2
β, Aε, Bε, Ah, Bh > 0 and Qh � 0, h = 1, . . . ,h,

are fixed prior parameters, while k = p + d1 + · · · + dh is

the total number of regression parameters in the model.

Remark 1. We do not assume conditional conjugacy or the

existence of equivalent data–augmented conjugate mod-

els.

Directed acyclic graph representation

Variational inference

We perform the posterior inference by substituting the

true posterior law p(θ|y)with a variational density q(θ) ∈
Q. According to the mean field approach (Ormerod and

Wand, 2010), we assume that the variational posterior

q(θ) factorizes as
p(θ|y) ≈ q(θ) = q(β,u) q(σ2

1) . . . q(σ2
h) q(σ2

ε). (5)

Moreover, we impose the parametric restriction

q(β,u; µ,Ω) ∼ Nk(µ,Ω). (6)

Then, we select to optimal approximation by maximizing

the evidence lower bound

q∗(θ) = argmax
q∈Q

L{y; q(θ)}, (7)

where L{y; q(θ)} = log p(y)− KL{q(θ) ‖ p(θ|y)}.
The optimal coordinatewise solution for q∗(σ2

ε) and q∗(σ2
h)

are available in closed form as Inverse–Gamma densities.

For the parametric solution of q∗(β,u) we rely on the

fully simplifiedmultivariateGaussian update byKnowles

and Minka (2011) and Wand (2014):

(update) µ̂ ← µ̂−H−1g, Ω̂← −H−1,

(gradient) g ← −Rµ̂− µq(1/σ2
ε)C
>Ψ(1)/α,

(Hessian) H ← −R − µq(1/σ2
ε)C
>diag

[
Ψ(2)

]
C/α,

(8)

where R ← blockdiag
[
σ−2
β Ip, µq(1/σ2

1)Q1, . . . , µq(1/σ2
h)Qh

]
.

Variational loss derivatives

We define Ψ(r) = (Ψ(r)
1 , . . . ,Ψ(r)

n )> and

Ψ(r)(yi, η̂i, σ̂2
i ) =

∫ +∞

−∞
ψ(r)(yi, x)φ(x; η̂i, σ̂2

i ) dx (9)

with r = 0, 1, 2 and i = 1, . . . , n. Here, ψ(r) is the r–th
weak derivative of ψ calculated wrt η, while

η̂i = c>i µ̂ and σ̂2
i = c>i Ω̂ ci. (10)

Theorem 1. Let ψ(y, η) be a continuous, convex function wrt
η with r–th order weak derivative ψ(r). Then, we have:

1. Ψ(r)(y, η, σ2) is infinitely differentiable wrt η and σ2;

2. Ψ(0)(y, η, σ2) is jointly convex wrt η and σ2;

3. Ψ(0)(y, η, σ2) ≥ ψ(y, η) for any η and σ2;

4. Ψ(0)(y, η, σ2)→ ψ(y, η) as σ2→ 0.

Remark 2. Because of Theorem 1, L{y; q(θ)} is concave and
differentiable wrt µ and Ω. Therefore, all the solutions of (7)

are global maximizers and belong in a closed convex set.

Algorithm

We end up with a semiparametric variational Bayes rou-

tine which can be viewed as a variational implementation

of the penalized iterated reweighted least squares algo-

rithm (Wood, 2017).

Semiparametric variational Bayes algorithm

Initialize Âε, B̂ε, Âh, B̂h, µ̂, Σ̂;

While convergence is not reached do:

Evaluate Ψ(0), Ψ(1), Ψ(2); O(nk2)
µq(1/σ2

ε) ←
{
Aε + n/α

}
/
{
Bε + 1>nΨ(0)/α

}
; O(n)

µq(1/σ2
1) ←

{
A1 + d1/2

}
/
{
B1 + 1

2
[
µ̂>1 Q1 µ̂1 + trace

(
Q1 Σ̂11

)]}
; O(d3

1)
. . . ← . . . . . .

µq(1/σ2
h) ←

{
Ah + dh/2

}
/
{
Bh + 1

2
[
µ̂>h Qh µ̂h + trace

(
Qh Σ̂hh

)]}
; O(d3

h)
R ← blockdiag

[
σ−2
β Ip, µq(1/σ2

1)Q1, . . . , µq(1/σ2
h)Qh

]
;

g ← −Rµ̂− µq(1/σ2
ε)C

>Ψ(1)/α; O(nk2)
H← −R − µq(1/σ2

ε)C
>diag

[
Ψ(2)]C/α; O(nk2)

ρ← LineSearch(g,H); Σ̂← −H−1; µ̂← µ̂− ρH−1g; O(k3)
End of while

Total computational complexity: O(nk2 + k3)

Extensions

Streamlined algorithms for cross-random effects, DLM, GMRF;

Inducing shrinkage and sparsity prior distributions;

Skew normal variational approximations;

Frequentist mixed models with non–regular likelihood.

Simulation results

We simulated 100 datasets having 500 observations

each from a non–linear heteroscedastic model. We esti-

mated the 90% conditional quantile of the data by using a

Bayesian semiparametric quantile regression model. The

posterior inference is performed viaMarkovchainMonte

Carlo (MCMC), conjugate mean field variational Bayes

(MFVB) and semiparametric variational Bayes (SVB).

Method Accuracy RMSE Iterations Exe. Time

MCMC 0.764 (0.054) 10000 3.944 (0.041)

MFVB 0.776 (0.021) 0.763 (0.051) 41.919 (13.502) 0.084 (0.033)

SVB 0.951 (0.011) 0.763 (0.050) 44.694 (14.632) 0.097 (0.053)

Table 1. Performance measures (standard errors).

Figure 2. Posterior predictive distributions.

Figure 3. Marginal posterior density functions.
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