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Today’s monitoring of sports activities

In sports monitoring, the use of smartwatches is

widespread. Apps and wearable devices are indeed driv-

ing the next digital health and fitness revolution, in which

intelligent and automatic real-time control and monitor-

ing tools will become extremely relevant (Statista, 2020).

Every day people collect data about their sports activi-

ties as a sequence of multivariate time series with com-

plex dependence structures, such as trends and periodic

components.
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However, people are not only interested in monitoring

their sports activities day after day, but also while they

are carried out.

We focus on real-time identification of variations in the

behavior of one or more measurements caused, for ex-

ample, by changes in physical condition.
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The model

For one runner, we observe the data y1:N,1:T , com-

posed of N ordered activities that are represented by P -

dimensional times series at T time points.

We introduce S1:N = (S1, . . . , SN) to divide the N ac-

tivities in SN segments, according to a discrete Markov

Chain with transition probability

p(Sn|Sn−1) =

λ, if Sn = Sn−1 + 1,

1 − λ, if Sn = Sn−1,

for λ ∈ (0, 1) and S1 = 1.

Assume that activity n belongs to segment s. We model

its measurements at time t with a state space represen-

tation with measurement equation

yn,t =
[
Z(S)

θ Z(A)
θ

] [α
(s)
t

αn,t

]
+ εn,t,

with εn,t
iid∼ NP (0, Σθ), and state equation[

α
(s)
t+1

αn,t+1

]
=

T(S)
θ 0
0 T(A)

θ

 [
α

(s)
t

αn,t

]
+

[
η

(s)
t

ηn,t

]
,

with η
(s)
t

iid∼ NM(0, Ψθ), ηn,t
iid∼ NK(0, ∆θ), and α

(s)
1

iid∼
NM(α̂(S)

1|0 , P(S)
1|0 ) independent of αn,1

iid∼ NK(α̂(A)
1|0 , P(A)

1|0 ).

The likelihood

We connect our model to the work byYildirim, Singh and

Doucet (2013), by considering the delays from the last

changepoint, i.e.

Dn|Dn−1 =

Dn−1 + 1, if Sn = Sn−1,

1, if Sn = Sn−1 + 1,

with D1 = 1, to express the likelihood as

pθ(y1:N,1:T ) = Eθ

[ N∏
n=1

GD
θ,n(Dn)

]
,

where the potential GD
θ,n(Dn) = pθ(yn,1:T |D1:n, y1:(n−1),1:T )

is defined as

GD
θ,n(Dn) =


pθ(yj:n,1:T |Dn)

pθ(yj:(n−1),1:T |Dn−1), if Dn = Dn−1 + 1,

pθ(yn,1:T |Dn), if Dn = 1,

with j = n − Dn + 1.

Between-online changepoint detection via EM

The between-online setting aims at maximizing the like-

lihood to detect changepoint whenever a new activity is

fully observed.

We adopt the online EM algorithm for changepoint de-

tection proposed by Yildirim, Singh and Doucet (2013),

which is based on the forward smoothing technique (see,

e.g., Kantas et al., 2015).

SMC approximation of the predicted probabilities

The forward smoothing technique requires to com-

pute pθ(Dn−1|Dn, y1:(n−1),1:T ) and pθ(Dn|y1:n,1:T ), Both

these quantities depend on the predicted probability

pθ(Dn|y1:(n−1),1:T ), obtained with SMC.

Let ηB
n−1(Dn−1) be a particle approximation of

pθ(Dn−1|y1:(n−2),1:T ), composed of B particles with

support DB
n−1 = {d1

n−1, . . . , dB−1
n−1 , dB

n−1} composed by the

particles themselves.

We consider the augmented support DB?
n , of size 2B, with

generic elements (1, db
n−1) and (db

n−1+1, db
n−1), and sample

B particles from DB?
n with weights

W (Dn, Dn−1) ∝ p(Dn|Dn−1)GD
θ,n−1(Dn−1)ηB

n−1(Dn−1)
to obtain ηB

n (Dn) = ∑B
b=1 δDn

(db
n, db

n−1), with support

DB
n = {d1

n . . . , dB
n }, where δDn

(db
n, db

n−1) = 1 if Dn = db
n,

and 0 otherwise.

Thewithin-online setting

The ability to monitor the presence of a changepoint dur-

ing activity n is given by the need of computing, on the

fly, the filtered probability

pθ(Dn|yn,1:t, y1:(n−1),1:T ),
for any t < T .

It is easy to show that this filtered probability is propor-

tional to

pθ(yn,1:t|Dn, y1:(n−1),1:T )pθ(Dn|y1:(n−1),1:T ),
where pθ(Dn|y1:(n−1),1:T ) is approximated by ηB

n (Dn) and

pθ(yn,1:t|Dn, y1:(n−1),1:T ) =


pθ(yn,1:t,yj:(n−1),1:T |Dn)

pθ(yj:(n−1),1:T |Dn) , if Dn > 1,

pθ(yn,1:t|Dn), if Dn = 1,

with j = max(1, n − Dn + 1).

Recognizing the elements that can be computed before

the activity begins is essential to effectively monitor it in

real-time environments.

While pθ(yj:(n−1),1:T |Dn) can be computed before the ac-

tivity starts, pθ(yn,1:t, yj:(n−1),1:T |Dn) needs to be evalu-

ated during the activity.

Real-time monitoring of changepoint probabilities

Monitoring the probability of changepoint while one ac-

tivity is performed allows to quantify the uncertainty re-

lated to changes in the health status of the athlete.
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Probability of changepoint at time t = 30, 60, 90, 120.

Real data application

We consider a set of 85warm-up running activities on flat
routes consisting of the first 10 minutes of running of a

well-trained athlete, and monitor the heart rate (internal

load, bpm) and the speed (external load, m/s) during the

activities.

The heart rate provides insights on the oxygen consump-

tion during the activity, but can be influenced by the in-

tensity of the exercise, represented by the speed of the

runner.
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With a probability threshold of 0.5 the number of de-

tected changepoints is 39. This highilights the high vari-

ability of the activities.
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With our model, we can derive information on the ac-

tivities while they are carried out. In the figures, four

different activities are classified as changepoint and not

a changepoint according to their behaviors with respect

to the past.
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