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FUNCTIONAL SPACES ON PLANAR LINEAR NETORKS

A planar linear network G = (W,E) can be characterized

by the set of verticesW and the set of edges E:{
W = {v1, . . . , v`}
E = {e1, . . . ek}

Moreover, we can split the verticesW = WI ∪WB, where

WI denotes the set in interior vertices, whileWB the set

of boundary vertices.
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To each edge incident to v` we assign a positive or

negative sign according to whether the edge ends at v` or
starts at v`:

δi` = 1, if ei ends at v`; δi` = 1, if ei starts at v`.

We define the L2 space over the network:

L2(G) := {φ : G → R s.t. φi ∈ L2(ei) ∀ei ∈ E}
Similarly, imposing appropriate transmission conditions, we define the Sobolev space

H2(G) := {φ :G → R s.t. φi ∈ H2(ei) ∀i ∈ I ; φi(v`) = φj(v`) ∀i, j ∈ I`, v` ∈ WI;
∑
i∈I`

δi`φ
′
i(v`) = 0, ∀v` ∈ WI}
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Finally, we define the space V with Neuman boundary conditions:

V := {φ :G → R s.t. φi ∈ H2(G) ∀i ∈ I ;φ′
i(v`) = 0 ∀i ∈ I, v` ∈ WB}
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FINITE ELEMENTS

We define a refined version of the network Gτ = (Wτ , Eτ){
Wτ = {ξ1, . . . , ξNτ

}
Eτ = {e1, . . . eKτ

}
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We define a set of Nτ basis functions ψ1, . . . , ψNτ
, each associated to a node ξi, such that

• ψi is linear over each edge ei ∈ Eτ , • ψi(ξj) = 1 if i = j, and 0 otherwise.

We discretize the space V with Vτ

Vτ = {ψτ ∈ C(G) s.t. ψτ |eτ ∈ P1 ∀eτ ∈ Eτ}.
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DENSITY ESTIMATION

The aim of the problem is to estimate a density function over a planar network. Let

f : G → R be a density function

{x1, ..., xn} be n independent realizations from f

We propose to estimate g = log(f ) by minimizing the penalized negative log-likelihood

functional

L(g|x1, ..., xn) = −1
n

n∑
i=1

g(xi) +
∫

G
eg + λ

∫
G
(∆g)2.

W
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ll
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se
d
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e
ss Theorem 1 The functional L(g) has a unique minimizer in V .

Lemma 1 The functional J(g) = −1
n

∑n
i=1 g(Xi) +

∫
G exp(g) is continuous and strictly

convex in V .

Lemma 2 Let V0 = {g ∈ V : ∆g = 0} and V∆ such that V = V0 ⊕ V∆. V0 is of finite

dimension. Moreover ‖∆·‖L2 is a norm in the space V∆, equivalent to the H2 norm.
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e
n
c
y Assumption 1 The true log-density g0 is bounded above and below, and is such

that
∫

G(∆g0)2 < ∞.

Assumption 2 For g in a convex set B0 around g0 containing ĝ and g∗, there exists
a positive constant c such that cVarg0 ≤ Varg uniformly with respect to g.

Theorem 2 Under the previous assumptions, as λ → 0 and nλ1/2 → ∞ the

estimator ĝ that minimizes L(g) is consistent.

We apply the method to the Chicago crimes dataset from library spatstat. It records the
nearest street address locations of crimes reported between 25 April 2002 and 8 May

2002 in the neighbourhood of the University of Chicago. On the left the observed data,

while on the right the estimate obtained with the proposed method.

SPATIAL REGRESSION

The aim is to estimate the parametric part β and nonparametric part f : G → R of a

regression model where

pi ∈ G for i = 1, . . . , n, are the locations of observation;
xi are observed covariates in pi;
yi = x>

i β + f (pi) + εi models the observed data.

We propose to estimate β and f by minimizing the penalized sum-of-square-errors func-

tional

J(f,β) = 1
n

n∑
i=1

(
yi − f (pi) − x>

i β
)2

+ λ
∫

G
(∆f )2.

Denote with X the matrix of covariates, Q = I − X(X>X)−1X>, and Ψ the matrix con-

taining the evaluation of the basis function on the data location.
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e
ss Theorem 3 The pair (β̂, f̂ ) that minimize J(f,β) exists unique. Moreover:

• β̂ = (X>X)−1X>(y − fn)
• f satisfies: unQfn + λ

∫
G ∆u∆f = unQy, ∀u ∈ V

C
o
n
si
st
e
n
c
y Assumption 3 The matrices An = n(Ψ>QΨ)−1 and Σn = X>X/n exist. Moreover,

their limits limnAn and limn Σn exist.

Theorem 4 Let n → ∞ and λ = o(n−1/2). Under the previous assumption the discrete

estimators f̂ and β̂ are consistent and asymptotically Gaussian.

Changing the first term of the functional J(f,β) the model can be extended in various

direction, such as generalized linear regression or quantile regression.
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