

Regularized semiparametric models on planar linear networks

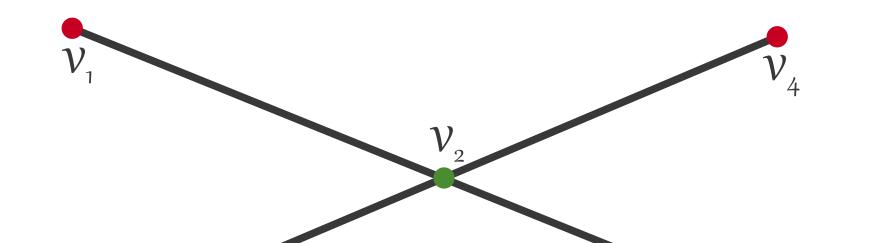
Eleonora Arnone, Aldo Clemente, Jorge Mateu & Laura M. Sangalli Statistical methods and models for complex data — Poster Session: 21 September 2022

FUNCTIONAL SPACES ON PLANAR LINEAR NETORKS

We define the L^2 space over the network: A planar linear network $\mathcal{G} = (W, E)$ can be characterized by the set of vertices W and the set of edges E:

 $\begin{cases} W = \{v_1, \dots, v_\ell\} \\ E = \{e_1, \dots, e_k\} \end{cases}$

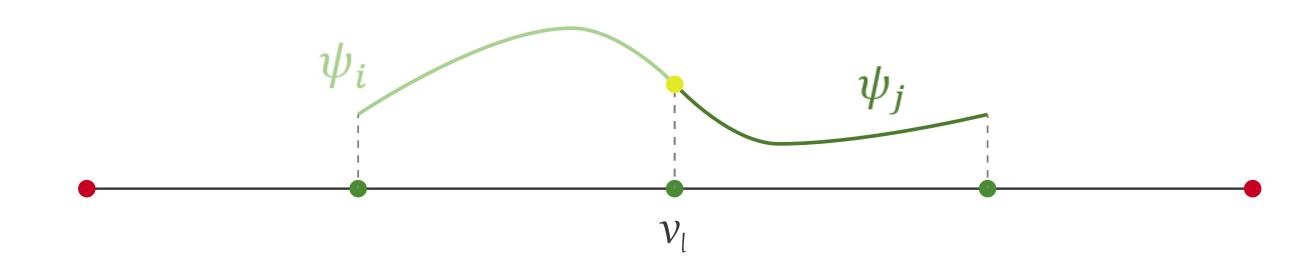
Moreover, we can split the vertices $W = W_I \cup W_B$, where W_I denotes the set in *interior* vertices, while W_B the set of boundary vertices.



 $L^2(\mathcal{G}) := \{ \phi : \mathcal{G} \to \mathbb{R} \text{ s.t. } \phi_i \in L^2(e_i) \ \forall e_i \in E \}$

Similarly, imposing appropriate transmission conditions, we define the Sobolev space

 $H^{2}(\mathcal{G}) := \{ \phi : \mathcal{G} \to \mathbb{R} \text{ s.t. } \phi_{i} \in H^{2}(e_{i}) \forall i \in I; \ \phi_{i}(v_{\ell}) = \phi_{j}(v_{\ell}) \forall i, j \in I_{\ell}, v_{\ell} \in W_{I}; \sum \delta_{i\ell}\phi_{i}'(v_{\ell}) = 0, \ \forall v_{\ell} \in W_{I} \}$

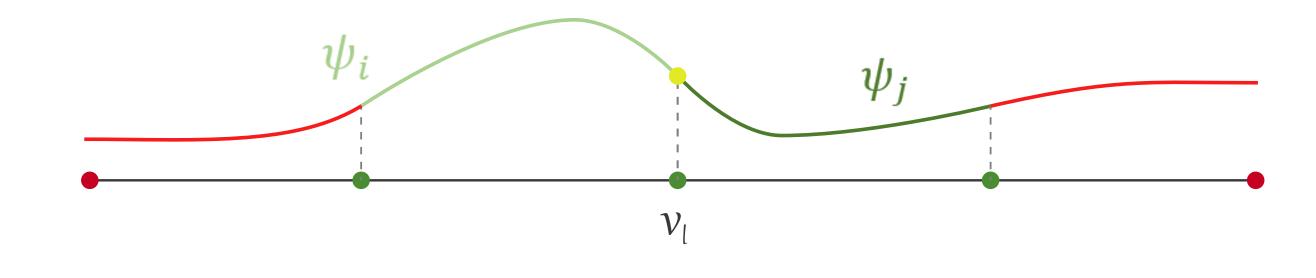


Finally, we define the space V with Neuman boundary conditions:

To each edge incident to v_{ℓ} we assign a positive or negative sign according to whether the edge ends at v_ℓ or starts at v_ℓ :

 $\delta_{i\ell} = 1$, if e_i ends at v_ℓ ; $\delta_{i\ell} = 1$, if e_i starts at v_ℓ .

 $V := \{ \phi : \mathcal{G} \to \mathbb{R} \text{ s.t. } \phi_i \in H^2(\mathcal{G}) \, \forall i \in I; \phi_i'(v_\ell) = 0 \, \forall i \in I, \, v_\ell \in W_B \}$



FINITE ELEMENTS

We define a refined version of the network $\mathcal{G}_{\tau} = (W_{\tau}, E_{\tau})$ We define a set of N_{τ} basis functions $\psi_1, \ldots, \psi_{N_{\tau}}$, each associated to a node ξ_i , such that • ψ_i is linear over each edge $e_i \in E_{\tau}$, • $\psi_i(\xi_j) = 1$ if i = j, and 0 otherwise. $\begin{cases} W_{\tau} = \{\xi_1, \dots, \xi_{N_{\tau}}\} \\ E_{\tau} = \{e_1, \dots, e_{K_{\tau}}\} \end{cases}$ We discretize the space V with V_{τ} $V_{\tau} = \{ \psi_{\tau} \in C(\mathcal{G}) \text{ s.t. } \psi_{\tau} |_{e_{\tau}} \in \mathbb{P}^1 \ \forall e_{\tau} \in E_{\tau} \}.$ $\left| \right|$ **DENSITY ESTIMATION SPATIAL REGRESSION**

The aim of the problem is to estimate a density function over a planar network. Let

The aim is to estimate the parametric part β and nonparametric part $f: \mathcal{G} \to \mathbb{R}$ of a regression model where

• $f: \mathcal{G} \to \mathbb{R}$ be a density function

ist

• $\{x_1, ..., x_n\}$ be *n* independent realizations from *f*

We propose to estimate $g = \log(f)$ by minimizing the penalized negative log-likelihood functional

$$L(g|x_1, \dots, x_n) = -\frac{1}{n} \sum_{i=1}^n g(x_i) + \int_{\mathcal{G}} e^g + \lambda \int_{\mathcal{G}} (\Delta g)^2.$$

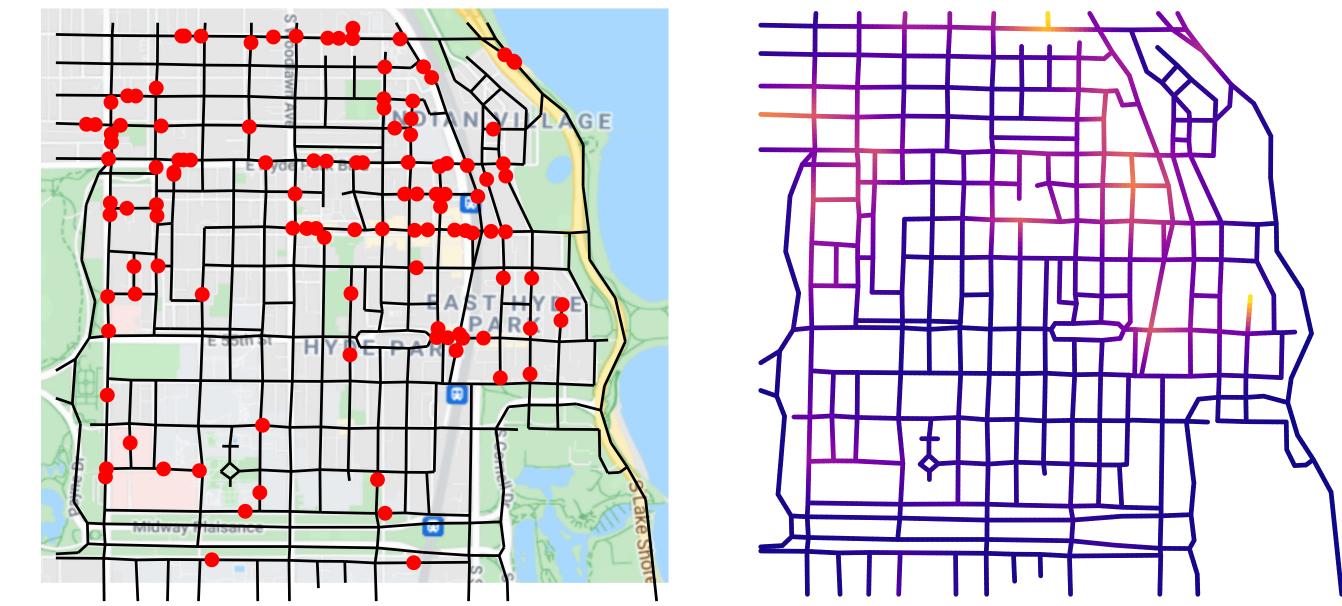
Theorem 1 The functional L(g) has a unique minimizer in V.

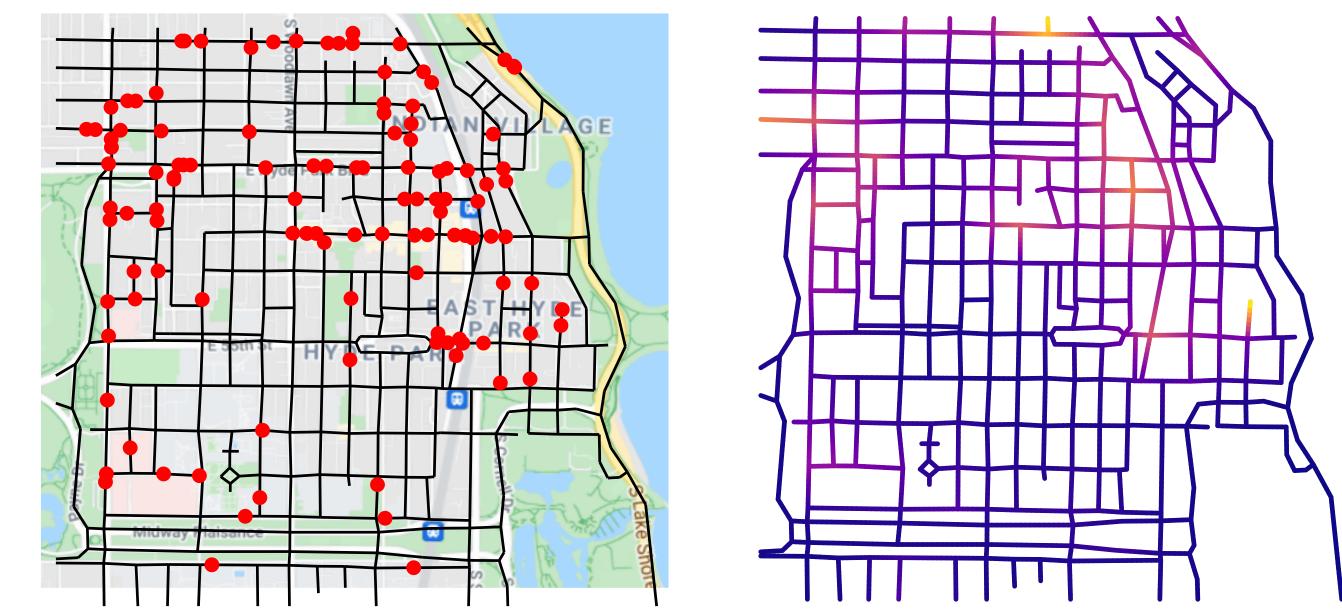
Example 1 The functional $J(g) = -\frac{1}{n} \sum_{i=1}^{n} g(X_i) + \int_{\mathcal{G}} \exp(g)$ is continuous and strictly $\overset{\bullet}{\mathbf{S}}$ convex in V.

Lemma 2 Let $V_0 = \{g \in V : \Delta g = 0\}$ and V_Δ such that $V = V_0 \oplus V_\Delta$. V_0 is of finite dimension. Moreover $\|\Delta \cdot\|_{L^2}$ is a norm in the space V_Δ , equivalent to the H^2 norm.

Assumption 2 For g in a convex set B_0 around g_0 containing \hat{g} and g_* , there exists a positive constant c such that $c \operatorname{Var} g_0 \leq \operatorname{Var} g$ uniformly with respect to g.

Theorem 2 Under the previous assumptions, as $\lambda \to 0$ and $n\lambda^{1/2} \to \infty$ the estimator \hat{g} that minimizes L(g) is consistent.





• $\mathbf{p}_i \in \mathcal{G}$ for i = 1, ..., n, are the locations of observation;

• \mathbf{x}_i are observed covariates in \mathbf{p}_i ;

• $y_i = \mathbf{x}_i^\top \boldsymbol{\beta} + f(\mathbf{p}_i) + \varepsilon_i$ models the observed data.

We propose to estimate β and f by minimizing the penalized sum-of-square-errors functional

$$J(f,\boldsymbol{\beta}) = \frac{1}{n} \sum_{i=1}^{n} \left(y_i - f(\mathbf{p}_i) - \mathbf{x}_i^{\top} \boldsymbol{\beta} \right)^2 + \lambda \int_{\mathcal{G}} (\Delta f)^2.$$

Denote with X the matrix of covariates, $Q = I - X(X^{\top}X)^{-1}X^{\top}$, and Ψ the matrix containing the evaluation of the basis function on the data location.

Theorem 3 The pair $(\hat{\beta}, \hat{f})$ that minimize $J(f, \beta)$ exists unique. Moreover: • $\hat{\boldsymbol{\beta}} = (X^{\top}X)^{-1}X^{\top}(\mathbf{y} - \mathbf{f}_n)$ • f satisfies: $\mathbf{u}_n Q \mathbf{f}_n + \lambda \int_{\mathcal{G}} \Delta u \Delta f = \mathbf{u}_n Q \mathbf{y}, \quad \forall u \in V$

Solution 3 The matrices $A_n = n(\Psi^{\top}Q\Psi)^{-1}$ and $\Sigma_n = X^{\top}X/n$ exist. Moreover, <u>e</u> their limits $\lim_{n \to \infty} A_n$ and $\lim_{n \to \infty} \Sigma_n$ exist. **Theorem 4** Let $n \to \infty$ and $\lambda = o(n^{-1/2})$. Under the previous assumption the discrete Si.

estimators \hat{f} and $\hat{\beta}$ are consistent and asymptotically Gaussian. 0

Changing the first term of the functional $J(f, \beta)$ the model can be extended in various direction, such as generalized linear regression or quantile regression.

References

Ferraccioli, F., Arnone, E., Finos, L., Ramsay, J.O., Sangalli, L.M. (2021). Nonparametric density estimation over complicated domains. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 83(2), 346 - 368.

Sangalli, L. M. (2021). Spatial Regression With Partial Differential Equation Regularisation. International Statistical Review, **89(3)**, 505 – 531.

Contact information

We apply the method to the Chicago crimes dataset from library **spatstat**. It records the nearest street address locations of crimes reported between 25 April 2002 and 8 May 2002 in the neighbourhood of the University of Chicago. On the left the observed data, while on the right the estimate obtained with the proposed method.

- **Eleonora Arnone**, post-doc
- 1 Università di Padova
- eleonora.arnone@unipd.it
- elearnone

2022 - Statistical methods and models for complex data, Padova