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Football player heatmaps

Football heatmaps are graphical representations of the

intensity of a football player action, measured in differ-

ent location over the pitch.

Figure 1. Illustrative heatmap of the distance run by a football player in different

areas of the pitch during a match.

We can represent an heatmap as a p-variate vector, with
p the number of cells in which the pitch is divided.

Then, a collection ofn heatmaps is a n×pmatrix y, where
dependence structure cannot be excluded in any of the

two dimensions.

Goal...of the project

Modeling the dependence between any couple

of elements of the data matrix yij and yls, exploit-
ing exogenous information on the similarity be-

tween players i and l, and the spatial relation be-

tween the pitch cells j and s.

Data

Wehave a n×p data matrix y ofn = 106 heatmaps of 106
different players collected over five professional football

matches by MathAndSport s.r.l.

Each heatmap is represented by a vector of p = 150 cells

in which we divide the pitch. The element yij reports the
distance covered by the player i within the cell j during
the match.

A n × c covariate matrix x, informing on player charac-

teristics, as expected role and position during the match,

is available.

We also exploit a p×mmeta covariatematrixw including

information on the pitch cells location to induce spatial

dependence.

Matrix decomposition

Factor models

Factor models express a statistical object of inter-

est in terms of a collection of simpler objects. For

example, a matrix y can be expressed as a trans-

formation f (z) of a sum of k rank-one factors

yij = f (zij), zij =
∞∑
h=1

ηih λjh + εij,

In matrix decomposition we take care of both depen-

dence among columns and dependence among rows:

zij =
∞∑
h=1

ηih(xi)λjh(wj) + εij,

with xi a covariate vector and wj a meta covariate vector,

including information on subjects and column entities.
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Figure 2. Latent data decomposition in two factors.

X-FILE algorithm

X-FILE, Accelerated Factorization via Infinite Latent Ele-

ments, is our novel point-wise estimation algorithm.

Regularized estimates are obtained by using a Bayesian

prior as penalization and then optimizing the posterior:

argmin
P

− log{L(y; P ,Σ,x,w)}− log{pr(P)},

−loglikelihood: loss function,

−logprior: penalty function.

Forward stage-wise additive maximization (∼ boosting):

given h − 1 terms fixed we sequentially estimate a new

factor ηhλ
>
h , such that

argmin
{η,λ}

log{L(z;
h−1∑
l=1

ηlλ
>
l + ηλ>, x, w)}+

h−1∑
l=1

log{pr(ηlλ
>
l )} + log{pr(η, λ)},

.

Structured prior penalty

ηih ∼ N{0, ψih},
E(ψih | βh) ∝ gx(xiβh),

λjh ∼ N{0, θhφjh},
E(φjh | γh) ∝ gw(wjγh),

Where ψih and φjh are local scales and θh is a factor-

specific scale.
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Figure 3. A representation of the mean equation of the loadings local scale.

The local scale means depend on exogenous information

through a transformation of a linear combination of co-

variates x and meta covariates w.
Thus, local shrinkage is tuned also on the basis of prior

knowledge.

Factor scale is decomposed as θh = ϑhρh.

ϑ−1
h ∼ Ga(aθ, bθ) i.i.d. power law tail distribution, such

that:

λjh estimation is robust to large signals.

it represents a dynamic learning rate regulating the

impact of each additive step of X-FILE, where small

ϑh induces a better fit and large ϑh induces a fast
algorithm and an easier interpretation.

ρh ∼ Ber(1 − πh) with increasing probability πh of
being zero, such that:

the increasing shrinkage allows for infinite factors;

it provides a simple stopping rule for the X-FILE

algorithm, by adding new factors only if they

increase the log-posterior of the model. The

algorithm stops at step h− 1 if

log{pr(ρh = 1)} + l
(ρh=1)
ij <

log{pr(ρh = 0)} + l
(ρh=0)
ij

where l
(ρh=1)
ij and l

(ρh=0)
ij are the maximum

log-likelihood of zij under ρh = 1 and ρh = 0,
respectively, with ρh+1 = ρh+2 . . . = 0.
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Figure 4. Data elaboration pipeline: 1- player tracking data are transformed into heatmaps, that are vectorized and stored in a matrix y; 2- the latent matrix z is decomposed through H and Λ by considering prior knowledge to induce structures; 3- the Λ matrix

estimated by the X-FILE algorithm is represented in the form of a collection of archetypal heatmaps.

Application results
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Figure 5. Archetypal heatmaps obtained by representing the columns of the estimated Λ.
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Figure 6. Shrinkage structure of the H matrix, inducing a

three-group player clustering in every factor.
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