

Fast structured matrix factorization with an application to football heatmaps

Lorenzo Schiavon & Antonio Canale & Bernardo Nipoti

Statistical methods and models for complex data — Poster Session: 21 September 2022

Football player heatmaps

Football heatmaps are **graphical representations** of the **intensity of a football player action**, measured in different location **over the pitch**.

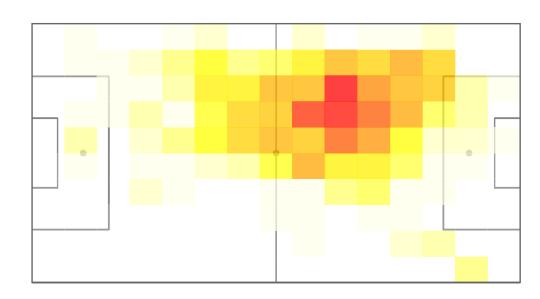


Figure 1. Illustrative heatmap of the distance run by a football player in different

Matrix decomposition

Structured prior penalty

Factor models

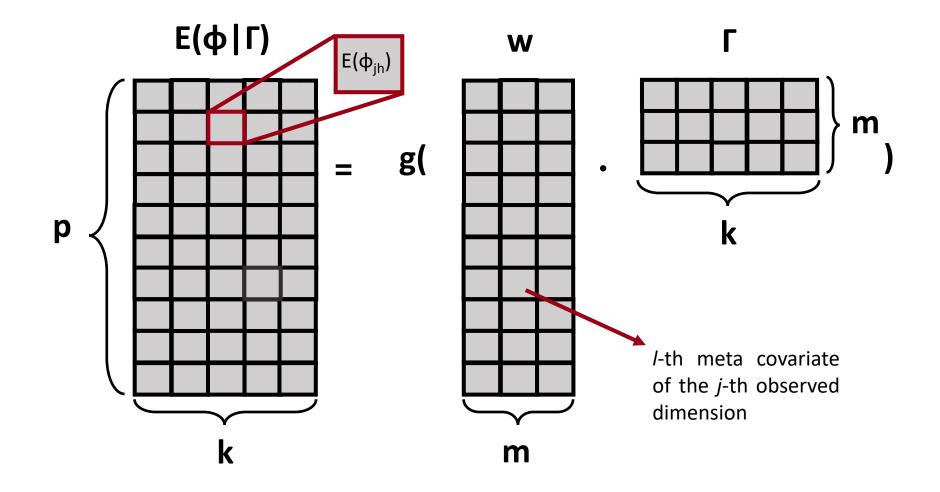
Factor models express a statistical object of interest in terms of a **collection of simpler objects**. For example, a matrix **y** can be expressed as a transformation f(z) of a **sum of** k **rank-one factors**

$$y_{ij} = f(z_{ij}), \quad z_{ij} = \sum_{h=1}^{\infty} \eta_{ih} \lambda_{jh} + \epsilon_{ij},$$

In matrix decomposition we take care of both dependence among columns and dependence among rows:

$$\sum_{i=1}^{\infty}$$

$$\begin{split} \eta_{ih} &\sim N\{0, \psi_{ih}\}, &\lambda_{jh} \sim N\{0, \theta_h \phi_{jh}\}, \\ E(\psi_{ih} \mid \beta_h) \propto g_x(\boldsymbol{x_i}\beta_h), &E(\phi_{jh} \mid \gamma_h) \propto g_w(\boldsymbol{w_j}\gamma_h), \\ \text{Where } \psi_{ih} \text{ and } \phi_{jh} \text{ are local scales and } \theta_h \text{ is a factor-specific scale.} \end{split}$$



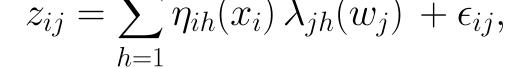
areas of the pitch during a match.

We can represent an heatmap as a p-variate vector, with p the number of cells in which the pitch is divided.

Then, a collection of n heatmaps is a $n \times p$ matrix y, where dependence structure cannot be excluded in any of the two dimensions.

Goal...of the project

Modeling the dependence between any couple of elements of the data matrix y_{ij} and y_{ls} , exploiting **exogenous information on the similarity** between players *i* and *l*, and the **spatial relation** between the pitch cells *j* and *s*.



with x_i a covariate vector and w_j a meta covariate vector, including information on subjects and column entities.

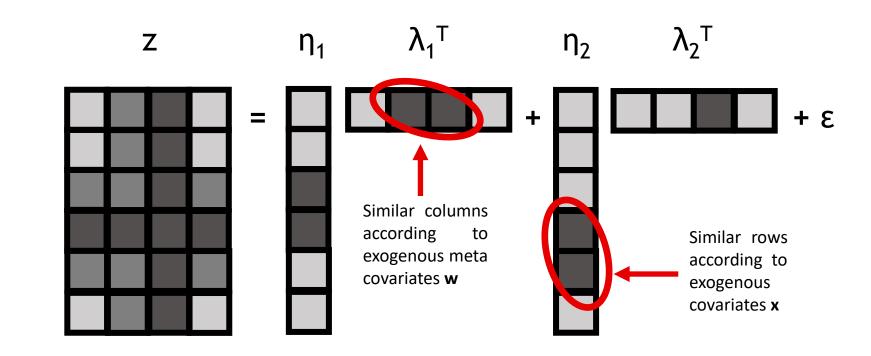


Figure 2. Latent data decomposition in two factors.

X-FILE algorithm

X-FILE, Accelerated Factorization via Infinite Latent Elements, is our novel point-wise estimation algorithm. **Regularized estimates** are obtained by using a **Bayesian prior** as **penalization** and then optimizing the posterior:

 $\underset{\mathcal{P}}{\operatorname{argmin}} - \log\{\mathcal{L}(\mathbf{y}; \mathcal{P}, \boldsymbol{\Sigma}, \mathbf{x}, \mathbf{w})\} - \log\{\operatorname{pr}(\mathcal{P})\},\$

–loglikelihood: loss function,–logprior: penalty function.

Figure 3. A representation of the mean equation of the loadings local scale.

The local scale means depend on exogenous information through a transformation of a linear combination of covariates x and meta covariates w.

Thus, local shrinkage is tuned also on the basis of prior knowledge.

Factor scale is decomposed as $\theta_h = \vartheta_h \rho_h$.

- $\vartheta_h^{-1} \sim \text{Ga}(a_\theta, b_\theta)$ i.i.d. power law tail distribution, such that:
 - λ_{jh} estimation is **robust** to large signals.
- it represents a dynamic learning rate regulating the impact of each additive step of X-FILE, where small ϑ_h induces a better fit and large ϑ_h induces a fast algorithm and an easier interpretation.
- $\rho_h \sim \text{Ber}(1 \pi_h)$ with increasing probability π_h of being **zero**, such that:
 - the increasing shrinkage allows for **infinite factors**;
- it provides a simple stopping rule for the X-FILE algorithm, by adding new factors only if they increase the log-posterior of the model. The

Data

We have a $n \times p$ data matrix y of $\mathbf{n} = \mathbf{106}$ heatmaps of 106 different players collected over five professional football matches by MathAndSport s.r.l.

Each heatmap is represented by a vector of $\mathbf{p} = \mathbf{150}$ cells in which we divide the pitch. The element y_{ij} reports the distance covered by the player *i* within the cell *j* during the match.

A $n \times c$ covariate matrix x, informing on player characteristics, as expected role and position during the match, is available.

We also exploit a $p \times m$ meta covariate matrix w including information on the pitch cells location to induce spatial dependence.

Forward stage-wise additive maximization (~ boosting): given $\mathbf{h} - \mathbf{1}$ terms fixed we sequentially estimate a new factor $\eta_h \lambda_h^{\mathsf{T}}$, such that

$$\begin{aligned} \underset{\{\eta,\lambda\}}{\operatorname{argmin}} \log \{ \mathcal{L}(z; \sum_{l=1}^{h-1} \eta_l \lambda_l^\top + \eta \lambda^\top, x, w) \} + \\ \sum_{l=1}^{h-1} \log \{ \operatorname{pr}(\eta_l \lambda_l^\top) \} + \log \{ \operatorname{pr}(\eta, \lambda) \} \end{aligned}$$

algorithm stops at step h-1 if

 $\log\{ pr(\rho_h = 1) \} + l_{ij}^{(\rho_h = 1)} < \log\{ pr(\rho_h = 0) \} + l_{ij}^{(\rho_h = 0)}$

where $l_{ij}^{(\rho_h=1)}$ and $l_{ij}^{(\rho_h=0)}$ are the maximum log-likelihood of z_{ij} under $\rho_h = 1$ and $\rho_h = 0$, respectively, with $\rho_{h+1} = \rho_{h+2} \dots = 0$.

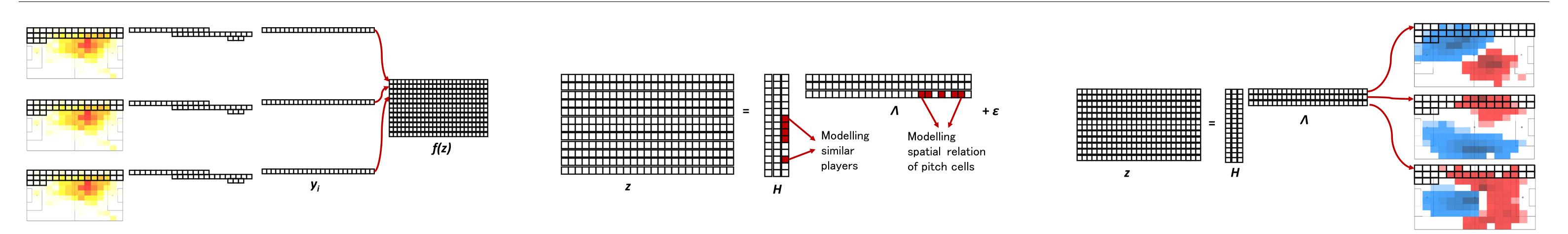


Figure 4. Data elaboration pipeline: 1- player tracking data are transformed into heatmaps, that are vectorized and stored in a matrix z is decomposed through H and Λ by considering prior knowledge to induce structures; 3- the Λ matrix estimated by the X-FILE algorithm is represented in the form of a collection of archetypal heatmaps.

Application results

Main references

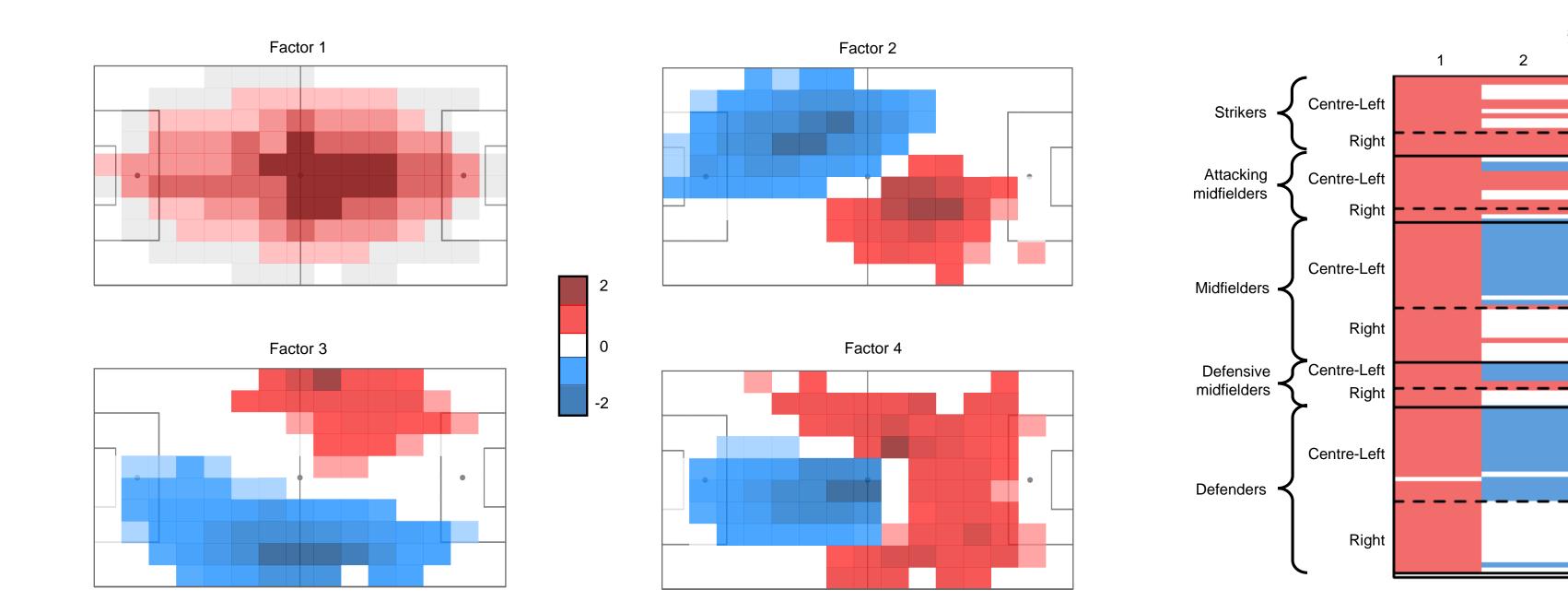


Figure 5. Archetypal heatmaps obtained by representing the columns of the estimated Λ .

Figure 6. Shrinkage structure of the H matrix, inducing a three-group player clustering in every factor.

A. Bhattacharya and D. B. Dunson (2011). Sparse Bayesian infinite factor models. *Biometrika*.

J. Friedman, T. Hastie and R. Tibshirani (2000). Additive logistic regression: a statistical view of boosting. *The Annals of Statistics*. S. Legramanti, D. Durante, and D. B. Dunson (2020). Bayesian cumulative shrinkage for infinite factorizations. *Biometrika*. A. Mnih and R. R. Salakhutdinov (2008). Probabilistic matrix factorization. In *Advances in neural information processing systems*. L. Schiavon, A. Canale, and D. B. Dunson (2022). Generalized infinite factorization models. *Biometrika*.

Contact information

- Lorenzo Schiavon, Post-doc research fellow
- Department of Statistical Sciences, University of Padova
- ✓ Iorenzo.schiavon@unipd.it

1

0

- Ø https://lorenzo-schiavon.github.io/
- https://github.com/lorenzo-schiavon/

2022 - Statistical methods and models for complex data, Padova