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Summary

Motivated by a big web-based personality test,

we develop a stochastic optimisation algorithm

that exploits pairwise likelihood structure to

scale ordinal factor models to large datasets.

The Big Five Personality test

Large-scale web-based test designed to

measure 5 personality areas [1]: Neuroticism

(N), Agreeableness (A), Extraversion (E),

Openness to experience (O) and

Conscientiousness (C).

Each area can be further split in 6 personality

facets, for a total of 30 mutally correlated

latent traits to account for.

The dataset consists of answers to 120

items on a five-category rating scale,

observed on more than 600 thousands units.

Pairwise Likelihood

The pairwise log-likelihood [2] is constructed ex-

ploiting the underlying response variable param-

eterisation, with:
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∑
j<j′

`jj′(θ) =
∑
j<j′

∑
sj,sj′

njj′

sjsj′ log πjj′

sjsj′ (1)

where njj′

sjsj′ is the observed frequency of the

specific bivariate pattern on columns j, j′, while

its marginal probability is defined as
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where ρy∗

jj′ is themodel correlation between vari-

ables j and j′, computed via λT
j Σuλj′.

Pros and cons

+ It substitutes large-dimensional integration

problems with bivariate ones;

+ It reduces data by sufficiency;

- Its computational cost grows with O(p2);

Details on the Underlying response
variable (URV) parameterisation

Assumptions:

1. Ordinal responses, Yj = sj ∈ {0, . . . , cj − 1}.
2. Data are partial observation of an underlying

response normally distributed y∗, such that

Yj = sj ⇐⇒ τ
(j)
sj−1 < y∗

j < τ (j)
sj

,

and y∗ = Λu + δ with Σδ = Ip − diag(ΛΣuΛT )
and δ ∼ Np(0, Σδ).

Parameters:

Loading matrix Λ, latent correlation matrix Σu

and thresholds vector τ , where
τ = (τ (1)T , . . . , τ (p)T )T with

τ (j) = (τ (j)
0 , . . . , τ

(j)
cj−2) ∈ Ncj−1;

θ ∈ Rd collects parameters from Λ, Σu and τ .

Likelihood:

The data marginal likelihood is given by
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n∑

i=1
log
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· · ·
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where φp(x; Σ) is the density of a p-dimensional

normal distribution evaluated at x, with mean

zero and variance Σ.
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Notation

n units, p observed items, q latent variables;

Random n × p matrix of manifest variables Y , with

Yi = (Yi1, . . . , Yip) ∈ Rp for i = 1, . . . , n. Realizations
y, with yi = (yi1, . . . , yip) ∈ Rp ;

Random n × q matrix of latent variables U , with

Ui = (Ui1, . . . , Uiq) ∈ Rq for i = 1, . . . , n.
Realizations u, with ui = (ui1, . . . , uiq) ∈ Rq and

ui
iid∼ Nq(0, Σu);

Latent covariance matrix Σu ∈ Rq × Rq.

Constrained to be a correlation matrix.

Loading matrix Λ = (λT
1 , . . . , λT

p ) ∈ Rp × Rq with

λj = (λj1, . . . , λjq), j = 1, . . . , p.

Stochastic Optimisation

Define a stochastic approximation to the gradient

via

∇p`(θ, y) ≈ ∇f (θ; y, w) = γ−1
∑
j<j′

wjj′∇`jj′(θ).

The quantities wjj′ are random binary weights such

that wjj′
iid∼ Bernoulli(γ).

Note that, if γ = 1, we retrieve
∇f (θ; y, w) = ∇p`(θ). If γ 6= 1 we still have
Ew{∇f (θ; y, w)} = ∇p`(θ).

The algorithm

The generic t-th epoch alternates [3]:

1. Stochastic step: Sample a new set of weights w(t);

2. Approximation step: Compute ∇f (θt−1; y, w(t));
3. Update step: Update θt via

θt = θt−1 + ηt∇f (θt−1; y, w(t)), where ηt = ηt−.5+ε,

such that
∑∞

t=1 ηt = ∞ and
∑∞

t=1 η2
t < ∞.

At the end of the optimization, trajectories are aver-

aged via θ̄ = T −1 ∑T
t θt.

Main Findings

The proposed framework allows to arbitrarily

decrease the complexity per iteration considering

only a subset of the pairs. Practitioners can choose

the complexity per iteration according to their

hardware/time constraints, similarly to what

happens when tuning the size of a mini-batch SGD.

A large-scale factor model application is provided

with the Big Five Personality Test, allowing

psychometricians to both calibrate items and

estimate the latent correlation structure at the

same time.
Future work will focus on:

Extending the algorithm to proximal updates [3];

Generalizing to the large class of composite likelihood functions while

developing the appropriate inference tools.
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