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Introduction

Side effects of drugs are a major cause of morbidity and

mortality around the world. Therefore, careful monitor-

ing of drug safety is essential to detect adverse drug

events (ADEs) that may follow the administration of a

drug. Many drugs’ ADEs are discovered during clinical

trial phases, particularly during phases II and III, but the

relatively low sample size used in those stages causes

a variety of infrequent effects to go unnoticed. There-

fore, it is extremely important to identify associations

between drugs and adverse events during the post-

marketing phase (phase IV) is extremely important.

State of the art: disproportionality models

Current methods used by pharmacovigilance institutes

to predict ADEs are based on the statistical analysis of

spontaneous databases (like FAERS) also known as dis-

proportionality models. Adverse effect reporting is spon-

taneous: physicians, researchers, pharmacists - some-

times even patients - voluntarily report adverse events.
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Figure 1. Use of spontaneous databases in pharmacovigilance.

Currently, pharmacovigilance agencies use a variety of

disproportionality models, usually classified as Frequen-

tist models (or Classical models), Bayesian models, Re-

gression models and Machine Learning models. Some

recent studies have compared the performance of differ-

ent models on a gold standard, showing that Bayesian

models, particularly those that introduce a shrinkage

component, perform better. Nonetheless, using only

spontaneous data, model performance remains moder-

ate (AUC < 0.70).

Model Class AUC

Bayesian Confidence Propagation NN B 0.69

Gamma-Poisson Shrinkage B 0.68

Reporting Odds Ratio F 0.66

Proportional Reporting Ratio F 0.65

Logistic Regression R/M 0.66

Random Forest R/M 0.52

Table 1. Performance of some common disproportionality models on the OMOP

Gold Standard Database. B: Bayesian, F: Frequentist, R/M: Regression/Machine

Learning. Adapted from Pham et al., 2019.

Limitations of current approach

What leads complex statistical models developed specif-

ically for spontaneous data to still have moderate perfor-

mance? By their nature, spontaneous data are extremely

biased. The main problems are:

No control data: since only cases are reported, there

are no data from patients who have not taken drugs.

Under-representation: only a small fraction of ADRs

are reported.

Publicity bias: a sudden increase in reports is due to a

publication or news story related to the drug in

question.

Weber effect: after some time since the drug was

introduced on the market, doctors get used to the

side effects and stop reporting them.

Confounding variables: often not reported in

pharmacovigilance databases.

Lack of labeled data (gold standard): leads to

difficulty in training machine learning models.

All of these biases lead disproportionality models to

produce inaccurate estimates if they only use

spontaneous data.

Biochemical data: an alternative data source

The use of endogenous, unbiased data sources can in-

crease the performance of ADEs prediction. To support

classic spontaneous pharmacovigilance data, we chose

to retrieve data from biochemical structure of drugs.

SMILEs:

CC(=O)Oc1ccccc1C(=O)O

Fingerprint vector:

89 113 123 126 127 136 139 
140 143 144 146 150 152 154 
157 159 160 162 163 164 165

Figure 2. Both SMILES strings and Fingerprint vectors are derived from the drug

structure using the CDK Java framework.

We extracted both SMILES strings and MACCS Finger-

print vectors from the active ingredient of the drugs. We

focus here only on SMILES strings because they allow us

to map a greater amount of information from the drug

structure.

→ SMILES (simplified molecular input line-entry system)

is a chemical notation specifically designed for

computer use by chemists.

SMILES as a chemical language

SMILES can be seen as a language, with a specific vocab-

ulary and grammar rules, representing atoms, molecules,

and bonds:

1. We used the strings as input for a BERT-like

transformer model (ChemBERTa) capable of creating a

large (∼ 700) embedding space, where each chemical

compound is mapped (Chithrananda et al., 2020).

2. The model masks 15% of each string and learns to

predict by auto-completion masked atoms, groups of

atoms and bonds.

3. ChemBERTa, avaiable on Hugging Face, has been

pre-trained on 250k SMILES strings from the zinc15
database.

4. The resulting embedding space represents a set of

latent variables capable of describing a chemical

compound.

Figure 3. Graphical representation of a ChmBERTa attention layer.

Results

We joined the set of features obtained from the embed-

ding spacewith the 2019 FAERS data. Then, we used the

resulting dataset to predict the presence of ADE with a

SupportVectorMachinemodel. Finally, we evaluated the

model using the area under the ROC curve and the area

under the precision-recall curve. We also obtained con-

fidence intervals for the evaluation metrics using boot-

strap replications.
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Figure 4. Result of the Support Vector Machine classifier on the OMOP Gold

Standard Database. AMI: Acute Myocardial Infarction, AKI: Acure Kidney Injury,

ALI: Acute Liver Injury, GB: Gastrointestinal Bleed.

In conclusion, using the joint set of features ChemBERTa

+ FAERS produces a higher predictive power than using

only one of the two sets. Also, AUCs are higher than

those previously shown.

Conclusions

Statistical analysis of spontaneous data alone can be

used in the prediction of ADE, but there is room for

improvement.

Prediction power can be increased with data from

chemical structure of the drugs.

We interpret SMILES strings as a language and embed

them in a latent feature space created by a BERT-like

transformer model (ChemBERTa).

This space of latent features has been joined to

FAERS spontaneous data. This set of features allows a

Support Vector Machine classifier to predict

drug-ADE associations with higher performance.

References

Pham, M., Cheng, F., Ramachandran, K. (2019). A Com-

parison Study of Algorithms to Detect Drug–Adverse

Event Associations: Frequentist, Bayesian, and Machine-

Learning Approaches. Drug Safety, 6, 743–750.

Chithrananda, S., Grand, G., Ramsundar, B. (2020).

ChemBERTa: large-scale self-supervised pretraining for

molecular property prediction. arXiv preprint.

Contact information

� Pietro Belloni, PhD Student

� Department of Statistical Sciences, University of Padua

� pietro.belloni.1@phd.unipd.it

� Nicholas Tatonetti, Associate Professor

� Department of Biomedical Informatics, Columbia University

� npt2105@cumc.columbia.edu

� www.tatonettilab.org

2022 - Statistical methods and models for complex data, Padova


