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Introduction

Generalized Additive Models allow for flexible specifica-

tion of dependence of the response on the covariates by

defining the model in terms of smooth functions: the ef-

fects.

The introduction of an algorithm which automatically

selects main effects and their interactions would

ensure interpretability and high accuracy.

Gradient boosting yields an additive model whose

terms are fitted in a stagewise fashion.

Here we propose a four–step algorithmwhich combines

Gradient boosting (L2Boost) and Lasso. It automatically

selects up to two–dimensional effects for GAMs.

To ensure parsimony, ANOVA decomposition of the

model into main effects and first order interactions is ex-

ploited.

Motivating application

The electricity net-load in Great Britain is the load on the

transmission system measured at the Grid Supply Points

(GSP groups).

GSP group ID Name

A 10 East England

C 12 London

P 17 North Scotland

L 22 South West England

(a)

(b)

Table 1a & Figure 1b: Some GSP group IDs with corresponding distribution

areas in Great Britain distribution network system, and the map of GSP groups.

Covariates are related to type of the day, weather and

price on n2ex market;

Each group exhibits a diversity of embedded wind and

solar capacities relative to load;

Thus, different GAM models should be used to

predict net-load in each area;

Data are avaiable in Browell (2021).

The proposed algorithm

X the n × k matrix containing n observations of k

covariates;

We want to fit the response variable y with a GAM

model whose effects are either one or two

dimensional.

Step 1: Gradient Boosting

Assume no interaction among covariates and fit y with

a GAM model containing only one–dimensional

effects, f1, . . . , fk;

Perform L2Boost with pre–specified base–learners for

each covariate;

Store the h covariates that have been selected by

Gradient Boosting.

X

x1 · · · xk

X

x1 · · · xk

L2Boost with

one dimensional effects

i1, . . . , ih
indices of selected

covariates

Step 2: Lasso on one dimensional effects

F1 = (fi1(xi1), . . . , fih(xih)) the n × h matrix whose

columns are the fitted effects in the previous step;

Let j1 = (1, . . . ,1)> be a h–dimensional vector of 1s;

The fitted response variable can be equivalently

written as

ŷ = F1 j1. (1)

Backward eliminate covariates with Lasso applied to

(1) using F1 as model matrix;

I1 be the set of covariate indices selected by Lasso.

F1

fi1 · · · fih

F1

fi1 · · · fih

Lasso

I1

indices of selected

covariates

Step 3: Gradient Boosting with two dimensional effects

C1 = {(i, j) | i, j ∈ I1, i < j} the set of unique

combinations of indices in I1;

Introduce additional base–learners to fit interactions

between variable pairs in C;
Perform L2Boost with both 1–dimensional effects in

step 1 and 2–dimensional effects as defined in this

step;

Store in I2 the indices of 1–dimensional effects, in C2
the pairs of indices of 2–dimensional effects.

X

x1 · · · xk

X
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L2Boost with one and two

dimensional effects

I2 C2
indices of selected

covariates

Step 4: Lasso on one and two–dimensional effects

F2 = (fl1(xl1), . . . , flh(xls), gt1(xt1), . . . gtr(xtr)) with li ∈ I2

and ti ∈ C2 denote the n × (s + r) matrix whose

columns are the fitted effects in the previous step;

j2 = (1, . . . ,1)> a (s + r)–dimensional vector of 1s;

The fitted response variable can be written as

ŷ = F2 j2; (2)

Backward eliminate covariates with Lasso applied to

(2) using F2 as model matrix;

Let I3, C3 denote the sets of covariate indexes and
pair of them selected by Lasso.

1–dim 2–dim

F2
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I3 C3
indices of selected

covariates

Simulation study

Figure 2 shows the results of the simulation study with

70 samples made of 2000 independent observations in

train set and 2000 in test set.

Each model sample is generated by

yi =
8∑
j=1

fj(xi,j) + f(xi,2, xi,3) + εi, i = 1, . . . ,2000

where xi ∼ U([0,1]), ε ∼ N(0, σ2). Additional 20

noise covariates have been added to each observation.

Their values were uniformly generated in the interval

[−0.5,0.5].
Thin-plate splines are used as base–learners.

Figure 2.Mean squared errors applying the algorithm to simulated data. σ2 is the

variance of the Gaussian noise. Step 1 and 3 are the mean squared error along

the algorithm, step 5 is obtained by fitting a GAM model with selected effects.

The last boxplot corresponds to the error obtained from the gam() function of

mgcv package.

Figure 3. From left to right: the frequency selection of each effect, varying the

noise variance (the first two rows are the wrong effects selected); a comparison

between the number of effects selected by gradient boosting in step 3 and by

Lasso in step 4.

Electricity net-load data analysis

The data set spans from 2nd January, 2014 to 31th De-

cember, 2018 with half-hourly resolution, determining

91726 observations for each GSP group.

Measurements collected in 2018 have been used as test

set.

Remaining data were split into 3 folds to perform cross

validation to fit models in the gradient boosting steps.

Thin–plate splines were used as base learners.

Figure 4. Effects selected applying the algorithm to Electricity net-load data set.

Figure 5. From left to right: the mean squared errors computed along the steps

of the algorithm and with the gam() function of mgcv package; the number of

selected effects in step 1, 3 and 4.
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