

Automatic effect selection for Generalized Additive Models

(1)

Collarin Claudia, Fasiolo Matteo & Agostinelli Claudio

Statistical methods and models for complex data — Poster Session: 21 September 2022

Introduction

Generalized Additive Models allow for flexible specification of dependence of the response on the covariates by defining the model in terms of smooth functions: the **effects**.

- The introduction of an algorithm which automatically selects main effects and their interactions would ensure interpretability and high accuracy.
- Gradient boosting yields an additive model whose terms are fitted in a stagewise fashion.

Here we propose a **four-step algorithm** which combines **Gradient boosting** (*L*₂**Boost**) and **Lasso**. It automatically selects up to two-dimensional effects for GAMs. To ensure parsimony, **ANOVA decomposition of the model** into main effects and first order interactions is exploited.

Step 2: Lasso on one dimensional effects

- F₁ = (f_{i1}(x_{i1}),..., f_{ih}(x_{ih})) the n × h matrix whose columns are the fitted effects in the previous step;
 Let j₁ = (1,...,1)^T be a h-dimensional vector of 1s;
- The fitted response variable can be equivalently written as

 $\hat{\mathbf{y}} = \mathbf{F}_1 \mathbf{j}_1.$

- Backward eliminate covariates with Lasso applied to
 (1) using F₁ as model matrix;
- \mathcal{I}_1 be the set of covariate indices selected by Lasso.

Simulation study

Figure 2 shows the results of the simulation study with 70 samples made of 2000 independent observations in train set and 2000 in test set. Each model sample is generated by

 $y_i = \sum_{j=1}^{8} f_j(x_{i,j}) + f(x_{i,2}, x_{i,3}) + \varepsilon_i, \qquad i = 1, \dots, 2000$

where $x_i \sim U([0, 1])$, $\varepsilon \sim N(0, \sigma^2)$. Additional 20 noise covariates have been added to each observation. Their values were uniformly generated in the interval [-0.5, 0.5].

Thin-plate splines are used as base-learners.

0	n
$\sigma^2 = 2.8$	$\sigma^2 = 4.0$

Motivating application

The **electricity net-load** in Great Britain is the load on the transmission system measured at the Grid Supply Points (GSP groups).

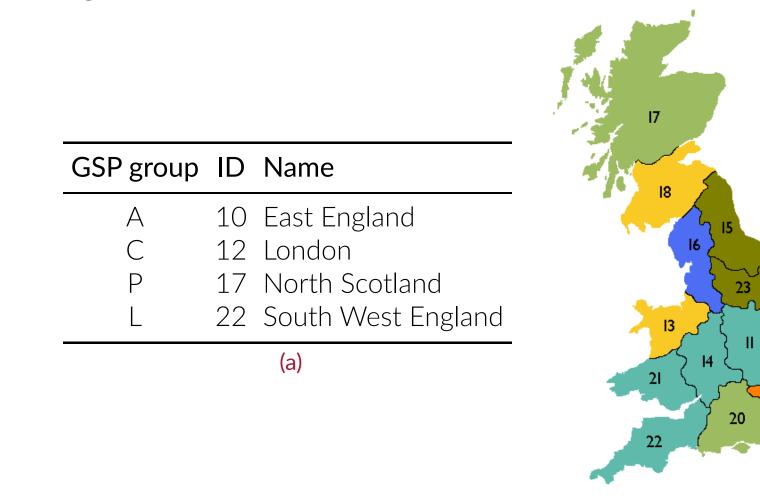
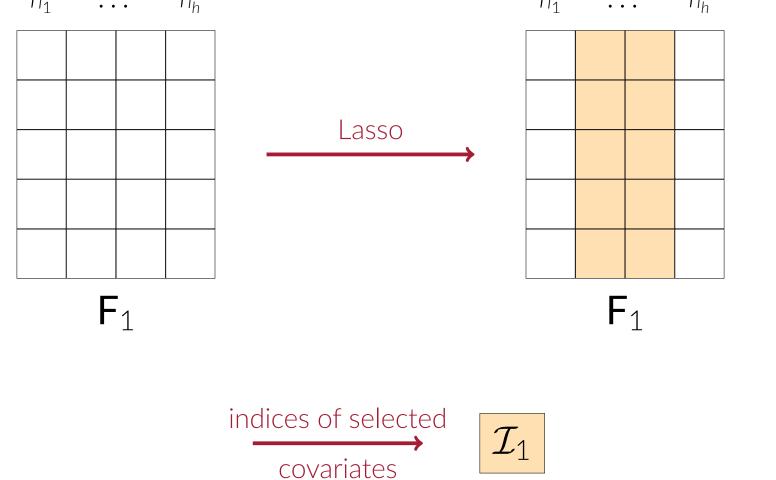


Table 1a & Figure 1b: Some GSP group IDs with corresponding distributionareas in Great Britain distribution network system, and the map of GSP groups.

- Covariates are related to type of the day, weather and price on n2ex market;
- Each group exhibits a diversity of embedded wind and solar capacities relative to load;



Step 3: Gradient Boosting with two dimensional effects

- $C_1 = \{(i,j) \mid i,j \in \mathcal{I}_1, i < j\}$ the set of unique combinations of indices in \mathcal{I}_1 ;
- Introduce additional base–learners to fit interactions between variable pairs in $\mathcal{C};$
- Perform L₂Boost with both 1-dimensional effects in step 1 and 2-dimensional effects as defined in this step;
- Store in \mathcal{I}_2 the indices of 1-dimensional effects, in \mathcal{C}_2 the pairs of indices of 2-dimensional effects.

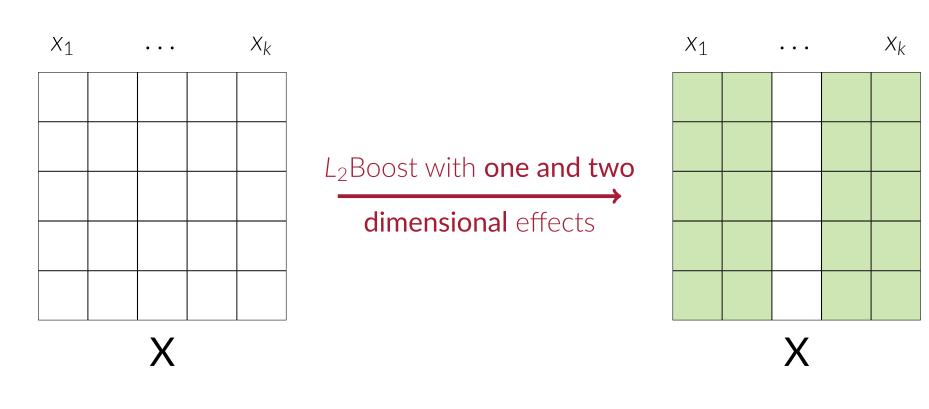
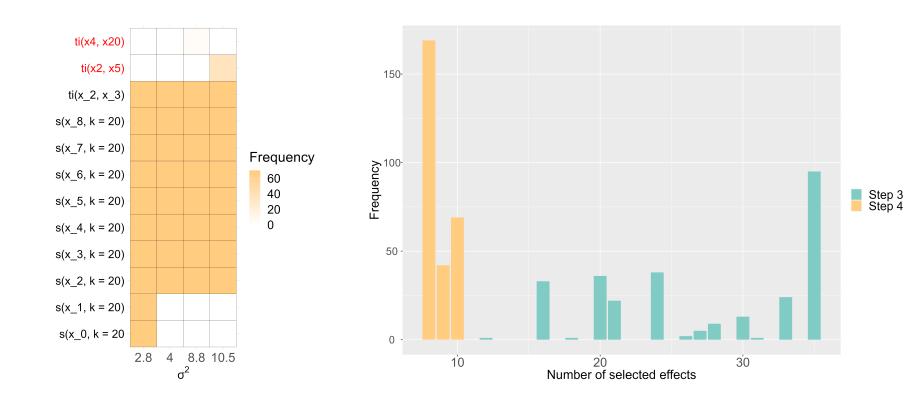




Figure 2. Mean squared errors applying the algorithm to simulated data. σ^2 is the variance of the Gaussian noise. Step 1 and 3 are the mean squared error along the algorithm, step 5 is obtained by fitting a GAM model with selected effects. The last boxplot corresponds to the error obtained from the gam() function of mgcv package.



- Thus, different GAM models should be used to predict net-load in each area;
- Data are avaiable in Browell (2021).

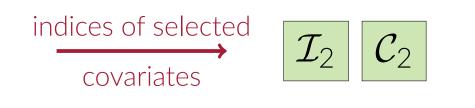
The proposed algorithm

- X the n × k matrix containing n observations of k covariates;
- We want to fit the response variable y with a GAM model whose effects are either one or two dimensional.

Step 1: Gradient Boosting

- Assume no interaction among covariates and fit **y** with a GAM model containing **only one-dimensional** effects, f_1, \ldots, f_k ;
- Perform L₂Boost with pre-specified base-learners for each covariate;
- Store the *h* covariates that have been selected by Gradient Boosting.

<i>x</i> ₁	X _k	
-----------------------	----------------	--



Step 4: Lasso on one and two-dimensional effects

F₂ = (f_{l1}(x_{l1}),..., f_{lh}(x_{ls}), g_{t1}(x_{t1}),...g_{tr}(x_{tr})) with l_i ∈ I₂ and t_i ∈ C₂ denote the n × (s + r) matrix whose columns are the fitted effects in the previous step;
j₂ = (1,...,1)^T a (s + r)-dimensional vector of 1s;
The fitted response variable can be written as

ted response variable can be written as

 $\hat{\mathbf{y}} = \mathbf{F}_2 \mathbf{j}_2;$

(2)

- Backward eliminate covariates with Lasso applied to (2) using $\ensuremath{\mathsf{F}}_2$ as model matrix;
- Let \mathcal{I}_3 , \mathcal{C}_3 denote the sets of covariate indexes and pair of them selected by Lasso.

Figure 3. From left to right: the frequency selection of each effect, varying the noise variance (the first two rows are the wrong effects selected); a comparison between the number of effects selected by gradient boosting in step 3 and by Lasso in step 4.

Electricity net-load data analysis

The data set spans from 2nd January, 2014 to 31th December, 2018 with half-hourly resolution, determining **91726 observations for each GSP group**.

Measurements collected in 2018 have been used as test set.

Remaining data were split into **3 folds** to perform cross validation to fit models in the gradient boosting steps. Thin-plate splines were used as base learners.

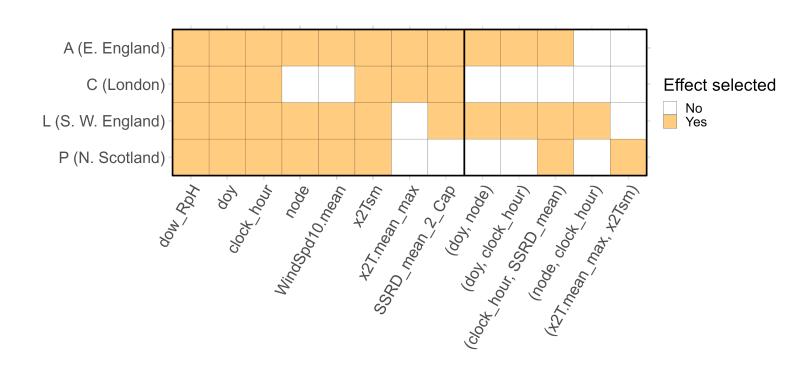


Figure 4. Effects selected applying the algorithm to Electricity net-load data set.



References

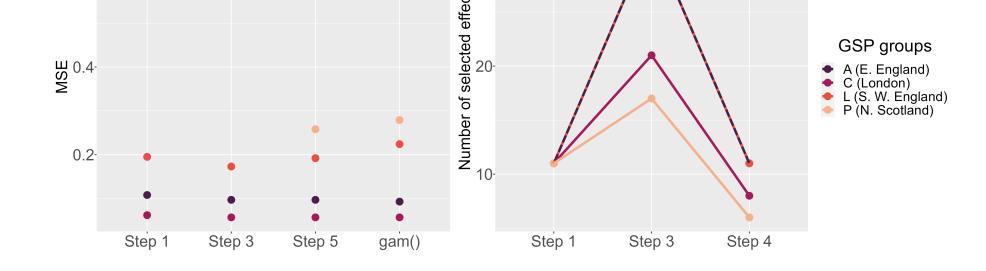


Figure 5. From left to right: the mean squared errors computed along the steps of the algorithm and with the **gam()** function of **mgcv** package; the number of selected effects in step 1, 3 and 4.

Contact information

- Browell, J. (2021). Supplementary Material for "Probabilistic Forecasting of Regional Net-load with Conditional Extremes and Gridded NWP" ---- Collarin Claudia, Ph.D. student
 - 💼 University of Padua
 - claudia.collarin@phd.unipd.it
 - in linkedin.com/in/claudia-collarin-5b60291b8

[Data set]. Zenodo. https://doi.org/10.5281/zenodo.5031704 Browell, J. and Fasiolo, M. (2021). Probabilistic forecasting of regional net-load with conditional extremes and gridded nwp. *IEEE Transactions* on Smart Grid, **12 (6)**: 5011 – 5019.

Trevor Hastie. Robert Tibshirani. (1986). Generalized Additive Models. Statistical Science, 1 (3), 297 – 310.

2022 - Statistical methods and models for complex data, Padova