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Framework and motivation

The overdispersion or extra-variation is a recurring phe-

nomenon when dealing with counts and categorical data.

↪→ When fitting a binomial, a multinomial or a Poisson model

if the data exhibit a larger variability than that the model is

able to explain, the sampling variation will be greater than the

estimated variation accounted by the model.

Overdispersion has specific causes and consequences

Causes may be the result of data aggregation such as

clumped sampling, the correlation between individual

responses or the additional experimental variability.

Inferential consequences are imprecise estimates and

biased standard errors that make model selection,

interpretability and prediction unreliable.

Our focus is on multivariate count data, whose natural prob-

abilistic model is the multinomial distribution. However, in

presence of overdispersion, this model may lead to a nomi-

nal variance well below the empirical one.

How to copewith overdispersion?

Quasi-likelihood approach where second order

hypotheses allow for relaxing constraints on the

variance structure;

Likelihood-based approach exploiting distributions

that differ in the variance and correlation structure,

that can be

NegativeMultinomial (MN), Dirichlet-Multinomial (DM),

Random Clumped Multinomial (RCM);

Positive Negative Multinomial (NM);

General Generalized Dirichlet Multinomial (GDM).

Main objectives

1. Comprehensive comparison of probabilistic models that

capture extra-variation in multivariate count data.

2. Introduction of a new model that extends the

Dirichlet-Multinomial in a deep fashion.

3. Analyses of empirical performances and properties

through a broad simulation study.

Deep Dirichlet Multinomial

In order to deal with overdispersion, we propose a new model

called Deep Dirichlet-Multinomial (DDM). Derived from [2],

it is a mixture of Dirichlet-Multinomial distributions with re-

strictions on the parameters.

Let DM(θ,m) be the probability mass function of a Dirichlet

Multinomial distribution with parameters θ and size m, then

the probability distribution of the DDM model is defined as

P(Y = y) =
K∑

k=1

ωkDM(β(1 +αk),m)

where ωk, for k = 1, . . . ,K, are the weights of the mixture

defined such that they satisfy 0 < ωk < 1 and
∑K

k=1 ωk = 1

while β > 0 is a vector of length p.

Each αk ∈ (−1,1) is a p-dimensional vector that can be in-

terpreted as perturbation parameter used to adjust β and get

a more flexible model that behaves better in case of overdis-

persion.

Positive values lead to a larger effect of θj = βj(1 + αj);

Negative values show which categories have more zeros.

Figure 1. Structure of DDM model. A hidden layer of nodes is introduced

to better capture the overdispersion.

Let θk = β(1 + αk), θ0k =
∑p

j=1 βj(1 + αjk), πk =
θk

θ0k
and ρ2k =

1/(1 + θk0), then we can define expectation and variance as:
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The variance can be split into two components:

1. A weighted sum of within variances;

2. A between variance part that captures both over and

underdispersion.

This model has a flexible correlation structure among vari-

ables that comes at the price of an high number of parameters

to be estimated which largely increase with K.

The model parameters are estimated through a generalized

EM algorithm with a quasi-Newton optimization step.

Simulation study

The capabilities of the proposed model are compared to the

likelihood-based models in two simulation studies that differ

in the way the overdispersion is introduced.

1. Randomly add zeros into the data;

2. Gradually add zeros by replacing the smallest counts

starting from cells with frequency one.

Different scenarios are simulated from a MN(π,m = 100),

starting from the case of lack of extra-variation (0% of zeros

added), to the case of 90% of zeros added.
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Figure 2. Average euclidean distances between the empirical and

estimated variances in the two simulations.

As the mixture components increase from K = 2 to K = 20,

the DDMmodel has a smaller and smaller euclidean distance.

In both scenarios it is evident that the Deep Dirichlet-

Multinomial distribution better and better approximates the

empirical true variance as K increases.

The price of flexibility is a greater computational burden

Figure 3. Evolution of the empirical true variance - solid black line - with

respect to the estimated variances of the different models as the number

of zeros in the dataset increases.

DDM asymptotic behavior

Exploiting the same data generating process, we analyze the

dynamic behavior of the DDMvariance as function of K in the

case of maximum overdispersion.

Figure 4. The red line describes the evolution of the fitted DDM variance

when K increases to +∞. The dashed black line is the sample variance.

The empirical analysis suggests that the estimated variance

tends to the computed variance when the number of ele-

ments K of the mixture goes to +∞.

Conclusion

A new approach, the Deep Dirichlet Multinomial, is

proposed. Its variance shows desirable properties

−→ It can ideally be split in within and between variance;

−→ It tends to the computed one when K → ∞.

Simulations show that the new model deals better with

overdispersed data, compare to other likelihood based

solutions.
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